12288 PIXELS VISIBLE CCD TDI IMAGER (PRELIMINARY)

- $8 \mu \mathrm{~m} \times 8 \mu \mathrm{~m}$ pixel size
- $8 \mu \mathrm{~m}$ pixel pitch
- Maximum 96 integration stages
- Variable number of integration stages
- Twenty-four outputs for fast readout
- Cascading feature for reduced number of outputs

Device Description:

The SC3928 is a high resolution, high data rate, 12288 pixels visible TDI linear imager. Each pixel consists of 96 stages of CCD (photo-gate) sensors for charge integration. There are twenty-four readout shift registers for high data rate.

The parallel shift registers are of 4-phase N -buried channel type, serving the multiple purposes of photodetection, charge integration and charge transfer. For a particular rate of transfer in the parallel
 shift register, the integration can be varied using 2, 8 or 32 stages instead of all the 96 . This is done by applying appropriate clock signals to the corresponding pins.

The read-out shift registers, like the parallel shift registers, are of 4 -phase N -buried channel type. The signal from 512 photo-sensitive elements associated with each read-out shift register is read out of each of the twenty-four outputs. At each output channel, the signals corresponding to 10 dummy pixels arrive first, followed by those from the photosensitive pixels. Signal charge from multiple ($2,4,8$ or 24) read-out shift registers may be read out through a single output by employing the cascading feature, which is done by applying appropriate clock signals. This reduces the number of outputs. The output signals may be processed to reconstruct the image.

Each output section comprises a floating diffusion charge detection node, a reset transistor and a two-stage N -buried channel source follower amplifier.

Pin Descriptions:

The device pins may be grouped according to their functions.

Parallel shift register:

The parallel shift register has been divided into four sections as per the requirements of stage selection. Each section has independent transport clock inputs of four phases each and all but the last have a stage selection clock input to allow operation as a transport or as a blocking gate. The charge from the unselected stages are dumped in a gated drain. Finally, at the interface between the parallel and the serial shift registers is the parallel to serial transfer clock.

$$
\text { Transport clocks (} \Phi_{\mathrm{VXY}} \text { : where } \mathrm{X} \text { denotes the phase and } \mathrm{Y} \text { denotes the segment) }
$$

Stage Selection Clocks ($\Phi_{\text {ssX }}$: where X denotes the segment)
Stage Selection Gate ($\mathrm{V}_{\mathrm{SSG}}$)
Stage Selection Drain ($\mathrm{V}_{\mathrm{SSD}}$)
Parallel Shift Register Terminal Clock ($\Phi_{\mathrm{V} 4 \mathrm{~T}}$)
Parallel to Serial Transfer Clock (Φ_{VH})

Serial shift register:

There are twenty-four serial read-out shift registers. These have been divided into two sections, with transport clocks of four phases for both. The cascading feature requires two more clocks, the cascade clock and the tap clock. There are four pins of each.

Transport clocks (Φ_{HXY} : where X denotes the phase and Y denotes the section)
Cascade clocks (Φ_{HCX} : where X is the serial letter for identifying the shift registers being cascaded)
Tap clocks ($\Phi_{\text {нтх }}$: where X is the serial letter based on function of the pin)

Output section and peripherals:

There is a single output gate pin. There are four pins each of the reset gate and the reset drain. Based on the requirement of cascading the amplifier drain pins (bias pins corresponding to unused outputs need not be powered) have been divided into eight groups. There are twentyfour output pins and amplifier source bias pins. Finally, there are the substrate pins and a pin for powering heat dissipation elements on-chip.

Output gate (V_{GS})
Reset gate (Φ_{RX} : where X is $\mathrm{A}, \mathrm{B}, \mathrm{C}$ or D)
Reset drain ($\mathrm{V}_{\mathrm{DRX}}$: where X is $\mathrm{A}, \mathrm{B}, \mathrm{C}$ or D)
Amplifier drain bias ($\mathrm{V}_{\mathrm{DDX}}$: where X may be from A to H)
Device output ($\mathrm{V}_{\text {OSX }}$: where X is a number between 1 and 24)
Amplifier source biases (V_{SX} : where X is a number between 1 and 24)
Heat dissipation bias (V_{HD})
Substrate bias (V_{SS})

Table 1: Pin descriptions (sorted by pin function).
a) PARALLEL SHIFT REGISTER

1. Transport Clocks					
Stage	Phase 1	Phase 2	Phase 3	Phase 4	Stage Sel.
96-34	$\Phi_{\mathrm{VID}}[\mathrm{D} 16]$	$\Phi_{\mathrm{V} 2 \mathrm{D}}[\mathrm{C} 13]$	$\Phi_{\text {V3D }}$ [D18]	Φ_{V4D} [D10]	-
33				-	$\Phi_{\text {SC }}$ [D08]
32-10	$\Phi_{\mathrm{VIC}}[\mathrm{D} 15]$	$\Phi_{\mathrm{V} 2 \mathrm{C}}[\mathrm{C} 12]$	$\Phi_{\mathrm{V} 3 \mathrm{C}}[\mathrm{C} 18]$	$\Phi_{\text {V4C }}[\mathrm{C} 10]$	-
9				-	$\Phi_{\text {SB }}$ [D07]
8-4	$\Phi_{\text {V1B }}$ [D14]	$\Phi_{\text {V2B }}$ [D12]	$\Phi_{\mathrm{V} 3 \mathrm{~B}}[\mathrm{C} 17]$	$\Phi_{\text {V4B }}[\mathrm{C} 09]$	-
3				-	$\Phi_{\text {SA }}[\mathrm{C} 07]$
2-1	$\Phi_{\text {V1A }}$ [C14]	$\Phi_{\text {V2A }}$ [D11]	$\Phi_{\text {V3A }}$ [C16]	$\Phi_{\text {V4A }}$ [D09]	-
2. Stage Selection Gate					$\mathrm{V}_{\text {SSG }}$ [D05]
3. Stage Selection Drain					$\mathrm{V}_{\text {SSD }}$ [C05]
4. Parallel Shift Register Terminal Clock					$\Phi_{\text {V4T }}$ [C06]
5. Parallel to Serial Transfer Clock					Φ^{VH} [D04]

b) SERIAL SHIFT REGISTER

Pins	Readout register number																										
	1	2	3	3	4	5	6		7	8	9	10	11	1		13	14	15	16	17	18	19	20	21	22	23	24
$\Phi_{\text {H1A }}$ [B04]																											
$\Phi_{\text {H2A }}[\mathrm{B} 03]$																											
$\Phi_{\text {H3A }}$ [A03]																											
$\Phi_{\text {H4A }}$ [B02]																											
$\Phi_{\text {H1B }}$ [B33]																											
$\Phi_{\text {H2B }}$ [B34]																											
$\Phi_{\text {H3B }}$ [A34]																											
$\Phi_{\text {H4B }}$ [B35]																											
$\Phi_{\text {HTA }}$ [D01], $\Phi_{\text {HCA }}$ [D36]																											
$\Phi_{\text {нтв }}$ [D02], $\Phi_{\text {HCB }}$ [D35]																											
$\Phi_{\text {HTC }}$ [D03], $\Phi_{\text {HCC }}$ [D34]																											
$\Phi^{\text {HTD }}$ [C03], $\Phi_{\text {HCD }}$ [C34]																											

c) OUTPUT SECTION AND PERIPHERALS

Pins	Readout register number																							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
$\Phi_{\text {RA }}[\mathrm{A} 01], \mathrm{V}_{\text {DRA }}[\mathrm{C} 01]$																								
$\Phi_{\text {RB }}$ [B01], $\mathrm{V}_{\text {DRB }}$ [C02]																								
$\Phi_{\text {RC }}$ [A36], $\mathrm{V}_{\mathrm{DRC}}[\mathrm{C} 36]$																								
$\Phi_{\text {RD }}$ [B36], $\mathrm{V}_{\text {DRD }}$ [C35]																								
$\mathrm{V}_{\text {DDA }}$ [A04]																								
$\mathrm{V}_{\text {DDB }}$ [A05]																								
$\mathrm{V}_{\text {DDC }}$ [A06]																								
$\mathrm{V}_{\text {DDD }}$ [B06]																								
$\mathrm{V}_{\text {DDE }}$ [A33]																								
$\mathrm{V}_{\text {DDF }}$ [A32]																								
$\mathrm{V}_{\text {DDG }}$ [A31]																								
$\mathrm{V}_{\text {DDH }}$ [B31]																								
$\mathrm{V}_{\text {OS01 }}$ to $\mathrm{V}_{\text {OS24 }}$	A07	A08	A09	A10	A11	A12	A13	A14	A15	A16	A17	A18	A19	A20	A21	A22	A23	A24	A25	A26	A27	A28	A29	A30
$\mathrm{V}_{\text {S01 }}$ to $\mathrm{V}_{\text {S24 }}$	B07	B08	B09	B10	B11	B12	B13	B14	B15	B16	B17	B18	B19	B20	B21	B22	B23	B24	B25	B26	B27	B28	B29	B30
(V_{HD} [B05]																								

The following pins are not connected: A0, A37, B0, B32, B37, C0, C19-C32, C37, D0, D19-D33 and D37.

Table 2: Pin Descriptions (sorted by pin number)

$\begin{array}{\|l\|} \hline \text { Pin } \\ \text { No. } \\ \hline \end{array}$	Pin symb.	Pin No.	Pin symb	$\begin{array}{\|l} \hline \begin{array}{l} \text { Pin } \\ \text { No. } \\ \hline \end{array} \\ \hline \end{array}$	Pin symb.	$\begin{array}{\|l} \hline \text { Pin } \\ \text { No. } \\ \hline \end{array}$	Pin symb.
A01	$\Phi_{\text {RA }}$	B01	$\Phi_{\text {RB }}$	C01	$\mathrm{V}_{\text {DRA }}$	D01	$\Phi_{\text {HTA }}$
A02	$\mathrm{V}_{\text {SS }}$	B02	$\Phi_{\mathrm{H} 4 \mathrm{~A}}$	C02	$\mathrm{V}_{\text {DRB }}$	D02	$\Phi_{\text {HTB }}$
A03	$\Phi_{\mathrm{H} 3 \mathrm{~A}}$	B03	$\Phi_{\mathrm{H} 2 \mathrm{~A}}$	C03	$\Phi_{\text {HTD }}$	D03	$\Phi_{\text {HTC }}$
A04	$\mathrm{V}_{\text {DDA }}$	B04	Φ_{HlA}	C04	V_{GS}	D04	Φ_{VH}
A05	$\mathrm{V}_{\text {DDB }}$	B05	V_{HD}	C05	$\mathrm{V}_{\text {SSD }}$	D05	$V_{\text {SSG }}$
A06	$\mathrm{V}_{\text {DDC }}$	B06	$\mathrm{V}_{\text {DDD }}$	C06	$\Phi_{\text {V4T }}$	D06	$\mathrm{V}_{S S}$
A07	$\mathrm{V}_{\text {OS } 1}$	B07	$\mathrm{V}_{\text {S }}$	C07	$\Phi_{\text {SA }}$	D07	$\Phi_{\text {SB }}$
A08	$\mathrm{V}_{\mathrm{OS} 2}$	B08	$\mathrm{V}_{\mathrm{S} 2}$	C08	$\mathrm{V}_{S S}$	D08	$\Phi_{\text {SC }}$
A09	$\mathrm{V}_{\text {OS3 }}$	B09	$\mathrm{V}_{\text {S3 }}$	C09	$\Phi_{\text {V4B }}$	D09	$\Phi_{\text {V4A }}$
A10	$\mathrm{V}_{\text {OS4 }}$	B10	$\mathrm{V}_{\text {S } 4}$	C10	$\Phi_{\text {V4C }}$	D10	$\Phi_{\text {V4D }}$
A11	$\mathrm{V}_{\text {OS5 }}$	B11	$\mathrm{V}_{\text {S }}$	C11	$\mathrm{V}_{\text {SS }}$	D11	$\Phi_{\text {V2A }}$
A12	$\mathrm{V}_{\text {OS6 }}$	B12	$\mathrm{V}_{\text {S6 }}$	C12	$\Phi_{\text {V2C }}$	D12	$\Phi_{\text {V2B }}$
A13	$\mathrm{V}_{\text {OS7 }}$	B13	$\mathrm{V}_{\text {S7 }}$	C13	$\Phi_{\text {V2D }}$	D13	$\mathrm{V}_{\text {SS }}$
A14	$\mathrm{V}_{\text {OS8 }}$	B14	$\mathrm{V}_{\text {S8 }}$	C14	$\Phi_{\text {V1A }}$	D14	$\Phi_{\text {V1B }}$
A15	$\mathrm{V}_{\text {OS9 }}$	B15	$\mathrm{V}_{\text {S9 }}$	C15	$\mathrm{V}_{S S}$	D15	$\Phi_{\text {V1C }}$
A16	$\mathrm{V}_{\text {OS } 10}$	B16	$\mathrm{V}_{\text {S10 }}$	C16	$\Phi_{\text {V3A }}$	D16	$\Phi_{\text {V1D }}$
A17	$\mathrm{V}_{\text {OS11 }}$	B17	$\mathrm{V}_{\text {S11 }}$	C17	$\Phi_{\text {V3B }}$	D17	$\mathrm{V}_{\text {SS }}$
A18	$\mathrm{V}_{\text {OS12 }}$	B18	$\mathrm{V}_{\mathrm{S} 12}$	C18	$\Phi_{\text {V3 }}$	D18	$\Phi_{\text {V3D }}$
A19	$\mathrm{V}_{\text {OS13 }}$	B19	$\mathrm{V}_{\text {S13 }}$	C19		D19	
A20	$\mathrm{V}_{\text {OS14 }}$	B20	$\mathrm{V}_{\text {S14 }}$	C20		D20	
A21	$\mathrm{V}_{\text {OS15 }}$	B21	$\mathrm{V}_{\text {S15 }}$	C21		D21	
A22	$\mathrm{V}_{\text {OS16 }}$	B22	$\mathrm{V}_{\text {S16 }}$	C22		D22	
A23	$\mathrm{V}_{\text {OS } 17}$	B23	$\mathrm{V}_{\text {S17 }}$	C23		D23	
A24	$\mathrm{V}_{\text {OS18 }}$	B24	$\mathrm{V}_{\text {S18 }}$	C24		D24	
A25	$\mathrm{V}_{\text {OS } 19}$	B25	$\mathrm{V}_{\text {S19 }}$	C25		D25	
A26	$\mathrm{V}_{\text {OS20 }}$	B26	$\mathrm{V}_{\mathrm{S} 20}$	C26		D26	-
A27	$\mathrm{V}_{\text {OS21 }}$	B27	$\mathrm{V}_{\text {S21 }}$	C27		D27	
A28	$\mathrm{V}_{\mathrm{OS} 22}$	B28	$\mathrm{V}_{\mathrm{S} 22}$	C28		D28	
A29	$\mathrm{V}_{\text {OS23 }}$	B29	$\mathrm{V}_{\mathrm{S} 23}$	C29		D29	
A30	$\mathrm{V}_{\text {OS24 }}$	B30	$\mathrm{V}_{\text {S2 }}$	C30		D30	
A31	$\mathrm{V}_{\text {DDG }}$	B31	$\mathrm{V}_{\text {DDH }}$	C31		D31	-
A32	$\mathrm{V}_{\text {DDF }}$	B32	-	C32		D32	-
A33	$\mathrm{V}_{\text {DDE }}$	B33	$\Phi_{\text {HıB }}$	C33	$\mathrm{V}_{S S}$	D33	-
A34	$\Phi_{\text {H3B }}$	B34	$\Phi_{\text {Н2 }}$	C34	$\Phi_{\text {HCD }}$	D34	$\Phi_{\text {HCC }}$
A35	$\mathrm{V}_{\text {SS }}$	B35	$\Phi_{\text {H4B }}$	C35	$\mathrm{V}_{\text {DRD }}$	D35	$\Phi_{\text {НСв }}$
A36	$\Phi_{\text {RC }}$	B36	$\Phi_{\text {RD }}$	C36	$\mathrm{V}_{\text {DRC }}$	D36	$\Phi_{\text {HCA }}$

The following pins are not connected: A0, A37, B0, B32, B37, C0, C19-C32, C37, D0, D19 - D33 and D37.

DC Characteristics:

Table 3 : DC Operating Characteristics :

Parameters	Symbol	Value			Units
		Min	Typical	Max	
Stage selection gate DC bias	$\mathrm{V}_{\text {SSG }}$	0.5	1	2	V
Stage selection drain	$\mathrm{V}_{\mathrm{SSD}}$	13	13.5	14	V
Output gate DC bias	V_{GS}	0.5	1	2	V
Reset drain DC bias	V_{DR}	13	13.5	14	V
Output amplifier drain supply	V_{DD}	15	18	19	V
Output amplifier source supply	V_{S}	0	0	0	V
Substrate bias	V_{SS}	0	0	0	V

Clock characteristics:

Figure 2 shows the timing relationships of the different clock inputs to the device. The timing details are enumerated in table 4 and the clock characteristics in table 5. Different modes of operation of the device require the routing of the different clock inputs shown in figure 2 to different pins. The routing for different stage selection modes are shown in table 6 , and those for the cascading modes are shown in table 7.

Table 4 : Timing Characteristics (referred to in figure 2):

Parameter	Value		Unit	Remarks
	Typical	Min.		
T_{i}	100	33	$\mu \mathrm{sec}$	Integration time
$\mathrm{t}_{10}-\mathrm{t}_{9}, \mathrm{t}_{2}-\mathrm{t}_{1}$	400		n sec	Horizontal to vertical transfer time gap
$\mathrm{t}_{3}-\mathrm{t}_{2}, \mathrm{t}_{5}-\mathrm{t}_{4}, \mathrm{t}_{7}-\mathrm{t}_{6} \& \mathrm{t}_{9}-\mathrm{t}_{8}$	400		n sec	VSR clock overlap period
$\mathrm{t}_{4}-\mathrm{t}_{3}, \mathrm{t}_{6}-\mathrm{t}_{5} \& \mathrm{t}_{8}-\mathrm{t}_{7}$	1.6		$\mu \mathrm{sec}$	VSR adjacent phase offset
$\mathrm{t}_{14}-\mathrm{t}_{10}$	150	50	n sec	Readout register clock period
$\mathrm{t}_{11}-t_{10}, t_{12}-t_{11}, t_{13}-t_{12}, t_{14}-t_{13}$	$\mathrm{t}_{\mathrm{r}} / 4$		$\mu \mathrm{sec}$	HSR clock overlap period
$\mathrm{t}_{\text {¢r }}$	$\mathrm{t}_{\mathrm{r}} / 4$		n sec	Reset clock on time

Timing Relationships (INDICATIVE - TO BE MODIFIED):

Figure 2 : Clock and output signals for normal device operation

Table 5: Clock Characteristics:

Parameters	Symbol	Level	Value		Unit
			Min	Max	
Parallel SR clocks ${ }^{1}$ (four phases: $\mathrm{X}=1,2,3,4$)	ϕ_{VX}	HIGH	10	13	V
		LOW	0.4	1	V
Stage selection clocks ${ }^{2}$ (eight pins: $\mathrm{X}=1$ to8)	$\phi_{\text {SSGX }}$	HIGH	10	13	V
		LOW	0.4	1	V
Parallel to Serial S.R. Clock	ϕ_{VH}	HIGH	10	13	V
		LOW	0.4	1	V
Serial SR Clocks (four phases: $\mathrm{X}=1,2,3,4$)	$\phi_{\text {HX }}$	HIGH	10	13	V
		LOW	0.4	1	V
Reset clocks	ϕ_{R}	HIGH	10	13	V
		LOW	0.4	1	V
Parallel shift register transport and stage selection clocks	C $\Phi_{\text {V1I,V3I }}$		4.4		nF
	СФ V2I,V4I		3.5		nF
	$\mathrm{C}^{\text {V1G,V3G }}$		3.3		nF
	$\mathrm{C}^{\text {V2G,V4G }}$		2.6		nF
	$\mathrm{C} \Phi_{\text {V1H,V3H }}$		2.2		nF
	$\mathrm{C} \Phi_{\text {V2H,V4H }}$		1.7		nF
	$\mathrm{C} \Phi_{\mathrm{VIA}, \mathrm{V} 3 \mathrm{~A}}, \mathrm{C} \Phi_{\mathrm{VIE,V} 3 \mathrm{E},} \mathrm{C} \Phi_{\mathrm{VIF}, \mathrm{V} 3 \mathrm{~F}}$		820		pF
	$\mathrm{C} \Phi_{\mathrm{V} 2 \mathrm{~A}, \mathrm{~V} 2 \mathrm{E},} \mathrm{C} \Phi_{\mathrm{V} 2 \mathrm{~F}, \mathrm{~V} 4 \mathrm{~A}}$		650		pF
	$\mathrm{C} \Phi_{\mathrm{VIC}, \mathrm{V} 3 \mathrm{C},} \mathrm{C} \Phi_{\mathrm{V} 1 \mathrm{D}, \mathrm{V} 3 \mathrm{D},} \mathrm{C} \Phi_{\mathrm{V} 4 \mathrm{E}, \mathrm{V} 4 \mathrm{~F}}$		540		pF
	$\mathrm{C} \Phi_{\mathrm{V} 2 \mathrm{C}, \mathrm{V} 2 \mathrm{D}}$		430		pF
	С $\Phi_{\text {V4C,V4D }}$		320		pF
	$\mathrm{C} \Phi_{\mathrm{V} 1 \mathrm{~B}, \mathrm{~V} 3 \mathrm{~B}}$		270		pF
	$\mathrm{C} \Phi_{\mathrm{V} 2 \mathrm{~B}}$		220		pF
	$\mathrm{C} \Phi_{\mathrm{V4B}, \mathrm{SS}(\mathrm{A} \text { to } \mathrm{H})}$		110		pF
Parallel to Serial S.R. Clock	СФ VH		200		pF
Serial SR Clocks (four phases: $\mathrm{X}=1,2,3,4$)	СФ HX		200		pF
Reset clocks	$\mathrm{C} \Phi_{\mathrm{R}}$		25		pF

Table 6: Clock connections for different stage selection options. The clock phase for each pin corresponding to each stage selection option is shown. Un-shaded cells denote gates clocked normally, cells in gray denote gates clocked for reverse transfer cells and 'L' denotes gates held at low potential to act as a barrier.

VSR Section	Pin	Stage Selection option			
		96	32	8	2
33-96	$\Phi_{\text {V1D }}$	1	1	1	1
	$\Phi_{\mathrm{V} 2 \mathrm{D}}$	2	4	4	4
	$\Phi_{\text {V3D }}$	3	3	3	3
	$\Phi_{\text {V4D }}$	4	2	2	2
	$\Phi_{\text {SSC }}$	4	L	2	2
9-32	$\Phi_{\mathrm{V} 1 \mathrm{C}}$	1	1	1	1
	$\Phi_{\mathrm{V} 2 \mathrm{C}}$	2	2	4	4
	$\Phi_{\mathrm{V} 3 \mathrm{C}}$	3	3	3	3
	$\Phi_{\text {V4C }}$	4	4	2	2
	$\Phi_{\text {SSB }}$	4	4	L	2
3-8	$\Phi_{\text {V1B }}$	1	1	1	1
	$\Phi_{\text {V2B }}$	2	2	2	4
	$\Phi_{\text {V3B }}$	3	3	3	3
	$\Phi_{\text {V4B }}$	4	4	4	2
	$\Phi_{\text {SSA }}$	4	4	4	L
1-2	$\Phi_{\text {V1A }}$	1	1	1	1
	$\Phi_{\mathrm{V} 2 \mathrm{~A}}$	2	2	2	2
	$\Phi_{\mathrm{V} 3 \mathrm{~A}}$	3	3	3	3
	$\Phi_{\mathrm{V} 4 \mathrm{~A}}$	4	4	4	4
	$\Phi_{\mathrm{V} 4 \mathrm{~T}}$	4	4	4	4
	Φ_{VH}	1	1	1	1

Table 7: Clocking requirements for different cascading options. The clock phase for each pin corresponding to each cascading option is shown. 'L' signifies that a low potential value is applied to the pin, for it to act as a barrier. For each cascading option, only the VDD pins marked 'ON' need to be powered.

Pins	Number of outputs				
	24	12	6	3	1
$\Phi_{\text {HiA \& B }}$	1	1	1	1	1
$\Phi_{\text {H2A \& B }}$	2	2	2	2	2
$\Phi_{\text {H3A \& B }}$	3	3	3	3	3
$\Phi_{\text {H4A \& B }}$	4	4	4	4	4
$\Phi_{\text {HTA }}$	4	L	L	L	L
$\Phi_{\text {HCA }}$	L	4	4	4	4
$\Phi_{\text {HTB }}$	4	4	L	L	L
$\Phi_{\text {HCB }}$	L	L	4	4	4
$\Phi_{\text {HTC }}$	4	4	4	L	L
$\Phi_{\text {HCC }}$	L	L	L	4	4
$\Phi_{\text {HTD }}$	4	4	4	4	L
$\Phi_{\text {HCD }}$	L	L	L	L	4
$\mathrm{V}_{\text {DDA }}$	ON	OFF	OFF	OFF	OFF
$\mathrm{V}_{\text {DDB }}$	ON	ON	OFF	OFF	OFF
$\mathrm{V}_{\mathrm{DDC}}$	ON	OFF	OFF	OFF	OFF
$\mathrm{V}_{\text {DDD }}$	ON	ON	ON	OFF	OFF
$\mathrm{V}_{\text {DDE }}$	ON	OFF	OFF	OFF	OFF
$\mathrm{V}_{\text {DDF }}$	ON	ON	ON	ON	ON
$\mathrm{V}_{\text {DDG }}$	ON	ON	OFF	OFF	OFF
$\mathrm{V}_{\text {DDH }}$	ON	OFF	OFF	OFF	OFF

All the pins not mentioned in the above two tables will be continuously powered as defined in Table 3.

Table 8 : Static and Dynamic Electrical Characteristics:

Symbol	Description	Values	Unit
P_{DC}	Static power dissipation	2.9	W
P_{AC}	Dynamic power dissipation	4.8	W
$\mathrm{Z}_{\mathrm{OUT}}$	Output impedance	250	Ω
$\mathrm{DC}_{\text {OUT }}$	Output DC level	11	V
I_{G}	Gate leakage current	1	nA

Table 9 : Electro-optical Characteristics :
The parameters are valid for Integration Time, $\mathrm{Ti}=0.1 \mathrm{msec}$

Parameter	Value	Unit	Remarks
Linearity (gamma)	0.015	-	For signal range $1 \mathrm{e} 3 \mathrm{e}^{-}$to $2 \mathrm{e} 5 \mathrm{e}^{-}$.
Conversion gain	>4	$\mu \mathrm{V} / \mathrm{e}^{-}$	
Charge Handling Capacity	$>2.5 \mathrm{e} 5$	e^{-}	
Dark current signal -Mean -Peak	$\begin{gathered} <500 \\ <1000 \end{gathered}$	$\mathrm{e}^{-} / \mathrm{msecs}$ $\mathrm{e}^{-} / \mathrm{msecs}$	Measured at $25 \pm 0.1{ }^{\circ} \mathrm{C}$
Noise in darkness	<50	$\mathrm{e}^{-} \mathrm{rms}$	Measured at $25 \pm 0.1^{\circ} \mathrm{C}$
Signal to RMS Noise Ratio	>250	-	Measured at $25 \pm 0.1{ }^{\circ} \mathrm{C}$
PS to readout register crosstalk	<1	\%	
Spectral response variation among pixels a. within a device b. among devices	$\begin{gathered} <3 \\ <10 \\ \hline \end{gathered}$	$\begin{aligned} & \% \\ & \% \\ & \hline \end{aligned}$	
Quantum efficiency B1 band B2 band B3 band B4 band	$\begin{aligned} & >0.1 \\ & >0.2 \\ & >0.2 \\ & >0.15 \end{aligned}$		B1 (400-450nm) B2 (520-590nm) B3 ($620-680 \mathrm{~nm}$) B4 (770-860nm)
Response non-uniformity -Max high spatial freq. Nonuniformity -Max. N.U. excl. spikes \& dips. -Max. allowable no. of spikes \& dips -Max. N.U. incl. spikes \& dips. -Max. signal amplitude of any pixel with respect to that of adjacent.	$\begin{gathered} 4 \\ \pm 3 \\ \pm \\ 10 \\ \pm 7 \\ 5 \end{gathered}$	\% \% \% \%	
$\begin{aligned} & \text { CTF } \\ & \text { at } \lambda=500 \mathrm{~nm} \\ & \text { at } \lambda=850 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & >0.7 \\ & >0.3 \end{aligned}$		
Horizontal charge transfer efficiency	>0.999995	-	
Vertical charge transfer efficiency	>0.99999	-	

Package Drawing :

The device package is of ceramic PGA type.

SEMICONDUCTOR LABORATORY
SECTOR 72
S. A. S. NAGAR - 160071

PUNJAB
INDIA

