OCTAL BUFFER/ LINE DRIVER <u>SCL541</u> (SC9029-0) **DATA SHEET** Version 1.0, AUG 2022

Semi-Conductor Laboratory

Government of India S.A.S. Nagar, Punjab-160071 www.scl.gov.in

PRODUCT DESCRIPTION:

SC9029-0 is radiation hardened non-inverting Octal buffer / Line driver have three state output. It is pin compatible to HCT541. The output enable pins (OE1 and OE2) control the three-state outputs. If either enable signal is high the outputs will be in the high impedance state. For data output both enables (OE1 and OE2) must be low.

Device is designed in180nm (TS18SL) CMOS technology. The device can operate over a large temperature range from -55°C to +125°C. Device is packaged in a hermetic sealed 20-pin ceramic dual Flat pack.

FEATURES:

- 5V± 0.5V Power Supply
- Cold Sparing feature at Input pins
- Three state outputs
- Low Power Dissipation, I_{DD} (Max.) <1mA
- Balanced Propagation Delays. t_{PLH}=t_{PHL}
- Symmetrical Output Impedance I_{OH}=I_{OL} = 8 mA
- Operating Temperature:-55°C to 125°C.
- SEL immune LET up to 70 MeV.cm²/mg.
- SET immune LET up to 70 MeV.cm²/mg
- Pin compatible with HCTS541
- 20-Pin Ceramic-Dual-Flat package

PIN CONFIGURATION:

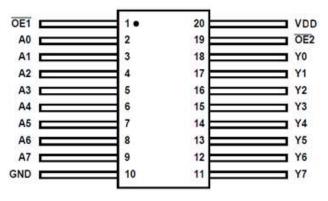


Figure: Device / Package Pin

PIN DESCRIPTION:

SYMBOL	PIN	DESCRIPTION
A0 to A7	2, 3, 4, 5, 6, 7, 8, 9	Input
Y0 to Y7	18, 17, 16, 15, 14, 13, 12, 11	Output
V _{DD}	20	Supply Voltage
GND	10	Ground(0V)
OE1,OE2	1,19	Control pins

Table: Package Pin Description

OCTAL BUFFER / LINE DRIVER (SC9029-0)

FUNCTIONAL TABLE:

I	OUTPUT		
OE1	OE2	Yn	
L	L	Н	Н
L	L	L	L
Н	Х	Х	Z
X	Н	Х	Z

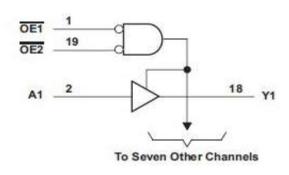
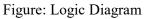



Table: Truth table

ABSOLUTE MAXIMUM RATINGS (1):

Over operating free-air temperature range (unless otherwise specified),

Parameter	Symbol	Ratings
Supply Voltage Range	V _{DD}	-0.5V to 6.5V
Input/ Output Voltage Range	V _{IO}	-0.5V to 6.5V
Max. Junction Temperature	TJ	150°C
Storage Temperature Range	T _{STG}	-65°C to 150°C

Table: Absolute maximum rating

(1) Stresses beyond those listed under *absolute maximum ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *recommended operating conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS:

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{DD}	Supply Voltage	4.5	5	5.5	V
V _{IH}	High Level Input Voltage	2.25	-	-	V
V _{IL}	Low Level Input Voltage	-	-	0.4	V
T _A	Operating Free Air Temperature	-55	25	+125	°C

Table: Recommended operating condition

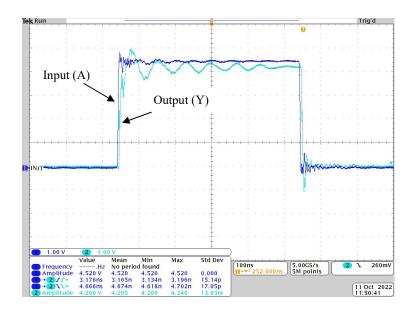
DC ELECTRICAL SPECIFICATIONS:

 V_{DD} = 5.0± 0.5V, V_{SS} =0V, T_{AMB} =-55°C to +125°C (unless otherwise specified)

Symbol Parameter		Test Conditions	Test Results			Units	
Symbol	1 al anicici			Тур.	Max	Units	
$I_{IH} / \ I_{IL}$	Input Leakage Current	V_{DD} =5.5V $V_{IN} = V_{DD}$ or 0V	-1	-	+1	uA	
I_{OZH} / I_{OZL}	HighZ Output Leakage Current			-	+5	uA	
I _{OFF,IN}	Cold spare Input Leakage Current	$V_{DD}=0V$ $V_{IN}=5.5$ Vor 0V	-10	-	+10	uA	
	Static Supply Current (No Load)	V_{DD} =5.5V $V_{IN} = V_{DD}$ or VSS	-	0.66	10	uA	
I _{DD}	Static Supply Current (Output Disabled)	$V_{DD}=5.5V$ $V_{IN}=V_{DD} \text{ or VSS}$ $OE1=OE2=V_{DD}$	-	0.32	10	uA	
V _{OH}	High Level Output Voltage (No Load)	$V_{DD}=4.5V$ $V_{IN}=V_{IH}=2.25V$ $I_{OH}=-50uA$	V _{DD} -0.1	4.49	V _{DD}	V	
Υ.	High Level Output	$V_{DD}=4.5V$ $I_{OH}=-4mA$	V _{DD} -0.4	4.38	V _{DD}		
V _{OH}	Voltage (With Load)	V_{DD} =4.5V I_{OH} = -8mA	V _{DD} -0.4	4.27	V _{DD}	- V	
V _{OL}	$ \begin{array}{c c} Low \ Level \ Output \\ Voltage \\ (No \ Load) \end{array} \begin{array}{c} V_{DD} = 4.5V \\ V_{IN} = V_{IL} = 0.8V \\ I_{OL} = 50uA \end{array} $		V _{ss}	0.005	0.1	V	
V	Low Level Output Voltage (With Load)	$V_{DD}=4.5V$ $V_{IN}=V_{IL}=0V$ $I_{OL}=4mA$	V _{ss}	0.08	0.4	V	
V _{OL}		$V_{DD}=4.5V$ $V_{IN}=V_{IL}=0V$ $I_{OL}=8mA$	V _{ss}	0.16	0.4	V	
Functional Test			-	-	1	MHz	

Table: DC Electrical Specification

AC ELECTRICAL SPECIFICATIONS:


Test condition:

 V_{DD} =4.5V, V_{IN} =0V or 4.5V @1 MHz, R_L = 500E, C_L = 50pF, T_A = -55°C to 125°C,

D	Symbol	From	То	Test Results			T T •4
Parameter				Min.	Тур.	Max.	Units
Propagation	t _{PLH}	А	Y	1	3.18	15	ns
Delay	t _{PHL}	A	I	1	4.67	15	ns
Output enable time	t _{PZH}	\overline{OE}	N7	-	7.00	-	ns
	t _{PZL}	OE	Y	-	4.66	-	ns
Output disable time	t _{PHZ}		X 7	-	29.0	-	ns
	t _{PLZ}	\overline{OE}	Y	-	27.0	-	ns

Table: AC Electrical Specification

Propagation Delay (t_{PLH /} t_{PHL}):

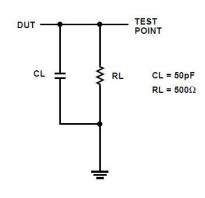
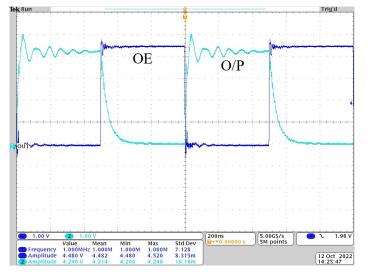



Figure: Propagation Delay waveform

Figure: O/P Load Circuit for Delay

OCTAL BUFFER / LINE DRIVER (SC9029-0)

HighZ Propagation Delay (t_{PHZ /} t_{PZH}):

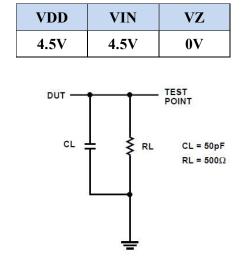


Figure: HighZ Propagation Delay

Figure: O/P Load Circuit for Delay

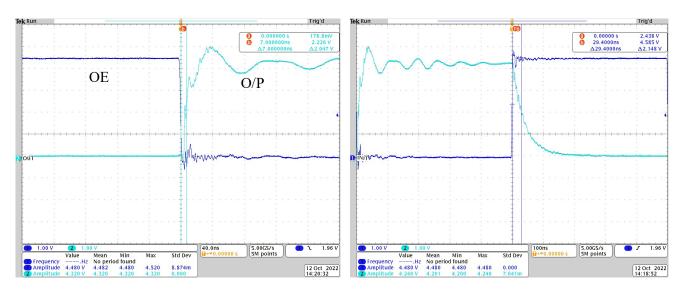


Figure: Propagation Delay (t_{PZH})

Figure: Propagation Delay (t_{PHZ})

HighZ Propagation Delay (t_{PLZ}/t_{PZL}):

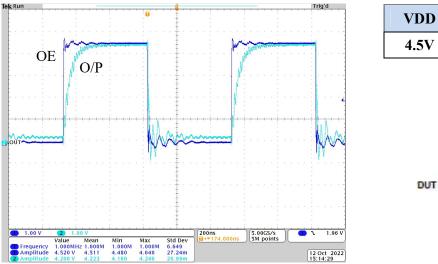


Figure: HighZ Propagation Delay

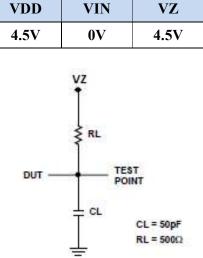


Figure: O/P Load Circuit for Delay

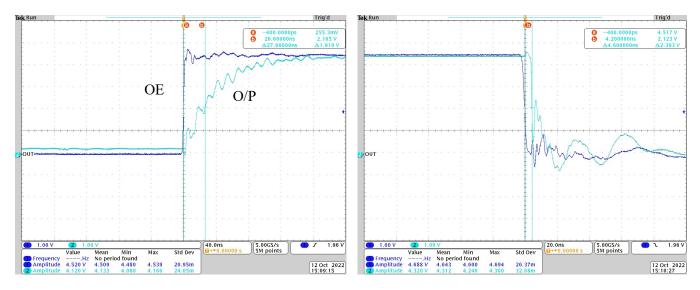


Figure: Propagation Delay (t_{PLZ})

Figure: Propagation Delay (t_{PZL})

RADIATION CHARACTERISTICS:

✤ Total Ionization Dose (TID) Testing

Radiation Type	Characteristics	Value	Unit
TID	High-dose rate (50 - 300 rad /sec) up to	150	kRad

Test Conditions: V_{DD}=5.5V, V_{IN}=V_{DD}, Outputs = Float

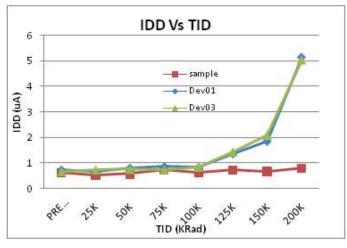


Figure: Supply Current Vs TID

✤ Single Event Effect (SEE) Testing

Radiation Type	Characteristics	Value	Unit
Heavy ions	SEL immune up to:	70	MeV-cm ² /mg
	SET immune up to:	70	wev-cm/mg

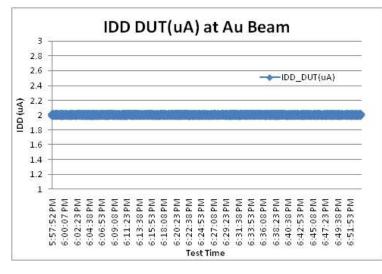
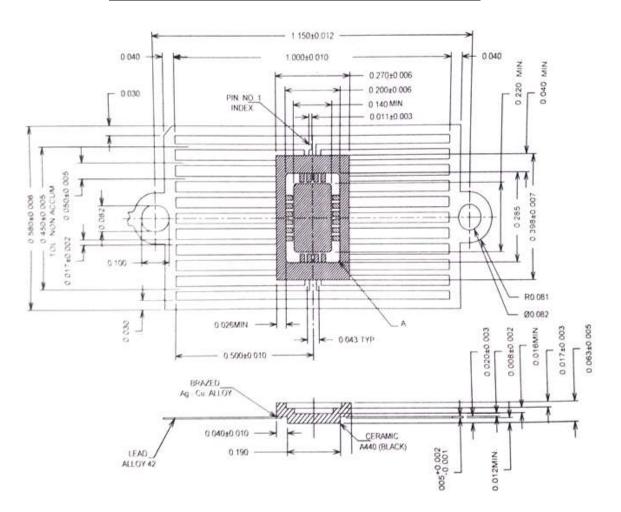



Figure: DUT Current Monitoring at LET-70 MeV-cm2/mg

PACKAGE DRAWING (20-Pin Ceramic-Dual-Flat pack)

DISCLAIMER

Semi Conductor Laboratory (SCL) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and specifications, and to discontinue any product. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. Reproduction of significant portions of SCL information in SCL data sheets is permissible only if reproduction is without alteration and is accompanied by all associated conditions, limitations, and notices. SCL is not responsible or liable for such altered documentation.