

DATA SHEET 12-BIT 200 MSPS CURRENT STEERING DAC (Digital to Analog Converter)

SC9023-0

Version 1.0, March 2022

Semi-Conductor Laboratory

Government of India

Page 1 of 15

PRODUCT DESCRIPTION:

The SC9023-0 is integrated 12-bit 200MSPS digital-to-analog converter with a tunable full-scale output current from 2mA to 20mA and having two complementary outputs. It has an on-chip precise low drift voltage reference of 1.2V. SC9023-0 can also operate with an external reference. This may improve the DC accuracy if the external reference circuitry is superior in its drift and accuracy. Latches are provided for high-speed synchronization providing better AC characteristics for DAC. The ASIC is fabricated in 180nm SCL CMOS technology.

FEATURES:

- Operating Voltage: 3.3V/1.8V
- Resolution: 12Bits
- Data Rate: 200MSPS
- Full Scale Current: 2mA to 20mA
- On Chip Voltage References
- Input straight Binary Format
- Package: 64 PIN CQFP
- Radiation hardened (TID) up to 300Krad(Si)

APPLICATIONS:

- Software-Defined Radio
- Signal and waveform Generation

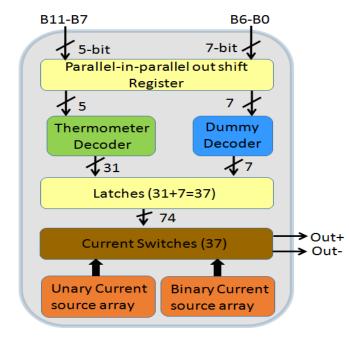


Figure-1: Device Block Diagram

DEVICE SUMMARY:

Table-1: Package Detail

Reference	Package	Package Pins		Description	Junction Temp. Range
SC9023-0	CQFP Package	64	Gold	Engineering Model	-55°C to +125°C

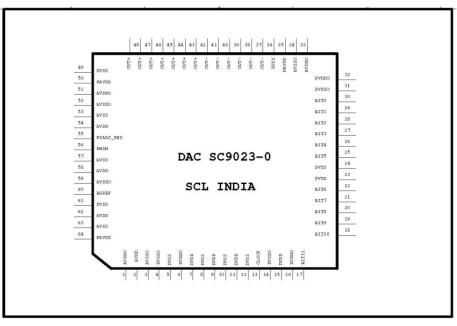


Figure-2: Pin Diagram

Pin No.	Pin Name	Pin Type	Pin Description
1,33,51	AVDDO	AP	Analog Positive Supply (+3.3 V)
35,50,64	PAVDD	AP	Analog Positive Supply (+1.8 V)
2,54,58,62	AVDD	AP	Analog Positive Supply (+3.3 V)
7,9,11,15,23	DVDD	DP	Digital Positive Supply (+1.8 V)
6,16,32	DVDDO	DP	Digital Positive Supply (+3.3 V)
53,57,63	AVSS	AP	Analog Negative Supply (0 V)
3,34,52,59	AVSSO	AP	Analog Negative Supply (0 V)
5,8,10,12,24,36,49,61	DVSS	DP	Digital Negative Supply (0 V)
4,14,31	DVSSO	DP	Digital Negative Supply (0 V)
43,44,45,46,47,48	OUT+	AO	DAC+ output current. Full-scale current when all data bits are 1s. These pins are internally shorted and should also be shorted at the PCB level.
37,38,39,40,41,42	OUT-	AO	DAC- output current. Full-scale current when all data bits are 0s.These pins are internally shorted and should also be shorted at the PCB level.
55	FSADJ_RES	AI	Full-Scale output current Adjust. Connect 2kohm to analog ground for 20mA full-scale output current. (Note 1).
56	PWDN	DI	Power Down PIN (Active Low) PWDN = logic '0' (Power-down mode) PWDN = logic '1' (Normal Model)
60	BGREF	AO	Internal reference output (Bypass with 0.1µF to Analog Ground is recommended)
13	CLOCK	AI	Clock Input

Pin No.	Pin Name	Pin Type	Pin Description
17	BIT11	DI	Data Bits (MSB)
18	BIT10	DI	Data Bits
19	BIT9	DI	Data Bits
20	BIT8	DI	Data Bits
21	BIT7	DI	Data Bits
22	BIT6	DI	Data Bits
25	BIT5	DI	Data Bits
26	BIT4	DI	Data Bits
27	BIT3	DI	Data Bits
28	BIT2	DI	Data Bits
29	BIT1	DI	Data Bits
30	BIT0	DI	Data Bits(LSB)

PIN TYPE: AI = Analog Input, AO = Analog Output, DI = Digital Input, DO = Digital Output, AP = Analog Power, DP = Digital Power.

Note 1: FSADJ_RES Pin Functionality

This pin is for adjusting full-scale output current. At this pin, voltage is internally set at 1.22V (Typical). Based on resister connect at FSADJ_RES pin w.r.t. ground will set the desired full-scale output current. To get 20mA full-scale output current, a $2k\Omega$ resistor (low drift) is required at FSADJ_RES pin w.r.t. ground.

Table-3: Full-scale current with an external resistor connected at FSADJ_RES pin w.r.t global ground

S. No.	Current flowing through an external resistor connected between FSADJ_RES pin and ground (I _{REF} =1.22/R _{FSADJ_RES})	Full-Scale Output Current $I_{FS}=32 \times I_{REF}$ (mA)
	(μΑ)	
1	625	20
2	62.5	2

ELECTRICAL SPECIFICATIONS:

All typical specifications are at $T_A = 25^{\circ}$ C, AVDDO=AVDD=DVDDO=3.3V, PAVDD=DVDD=1.8V, CLOCK=200MHz and $I_{FS} = 20$ mA unless otherwise stated. All maximum specifications are assured across operating temperature and voltage ranges.

Parameters		Test Conditions	Min.	Тур.	Max.	Units
POWER SUPPLY						
Analog supply voltage AVDDO, PAVDD, AVDD			3.135	3.3	3.465	V
Digital supply voltage	(DVVDO)		3.135	3.3	3.465	V
Digital supply voltage	(DVVD)		1.71	1.8	1.89	V
Analog Supply	AVDDO		50	51	62	μΑ
Current	AVDD		23.5	23.6	23.7	mA
Digital Supply	DVDDO		460	470	480	μΑ
Current	DVDD		1.79	1.83	1.90	mA
Power Dissipation ²			83	84	85	mW
Analog Supply	AVDDO		50	51	62	μΑ
Current (Power down mode)	AVDD		250	270	425	μΑ
Digital Supply	DVDDO		50	51	70	μΑ
Current (Power down mode)	DVDD		50	51	62	μΑ
Power Dissipation (Power Down) ³			1.5	2.3	2.7	mW
INTERNAL REFERENCE					•	
Internal Reference Out	tput, BGREF		1.2048	1.2216	1.2275	V
Full-Scale Output curr FSADJ_RES	ent Adjust,		599.1	610.5	619.8	μΑ
OUTPUT CURRENT						
Minimum Full Scale C Current ⁴ , I _{FS(MIN)}	Dutput			2		mA
Maximum Full Scale C Current ⁴ , I _{FS(MAX)}	Dutput			20		mA
Gain Error			-0.9		+0.9	% of FSR
Offset Error			-0.4		+0.8	% of FSR
Power Supply Gain	OUT+		1.10	1.11	1.36	% of FSR
Sensitivity (PSGS)	OUT-		1.08	1.09	1.29	% of FSR
DC ACCURACY						
Differential Non Linea	arity (DNL)		-0.6		0.7	LSB
Integral Non Linearity	(INL)		-0.8		0.6	LSB
AC LINEARITY						

Parameters	Test Conditions	Min.	Тур.	Max.	Units
	$f_{clk}=1\ \text{MHz}\ ; f_{out}=100.021\ \text{KHz}$		74		dBc
	$f_{clk} = 10 \text{ MHz}$; $f_{out} = 500.0305 \text{ KHz}$		70		dBc
	$f_{clk} = 50 \text{ MHz} ; \ f_{out} = 2.5002 \text{ MHz}$		60		dBc
Signal To Noise Ratio (SNR)	$f_{clk} = 100 \text{ MHz}; f_{out} = 2.5009 \text{ MHz}$		60		dBc
	$f_{clk} = 200 \text{ MHz}; f_{out} = 1.0040 \text{ MHz}$		61		dBc
	$f_{clk} = 200 \text{ MHz}; f_{out} = 5.0018 \text{ MHz}$		57		dBc
	$f_{clk}=200 \text{ MHz}; f_{out}=10.0006 \text{ MHz}$		53		dBc
	$f_{clk} = 1$ MHz; $f_{out} = 100.021$ KHz		73		dBc
Signal To Noise And Distortion	$f_{clk} = 10 \text{ MHz}$; $f_{out} = 500.0305 \text{ KHz}$		69		dBc
(SINAD)	$f_{clk} = 50 \text{ MHz}; f_{out} = 2.5002 \text{ MHz}$		59		dBc
	$f_{clk} = 100 \text{ MHz}; f_{out} = 2.5009 \text{ MHz}$		59		dBc
	$f_{clk} = 200 \text{ MHz}; f_{out} = 10.0006 \text{ MHz}$		53		dBc
	$f_{clk}=1 \ MHz; f_{out}=100.021 \ KHz$		-82		dBc
	$f_{clk} = 10 \text{ MHz} \ ; \ f_{out} = 500.0305 \text{ KHz}$		-76		dBc
Total Harmonics Distortion (THD)	$f_{clk} = 50 \text{ MHz} \ ; \ f_{out} = 2.5002 \text{ MHz}$		-70		dBc
	f_{clk} = 100 MHz; f_{out} = 2.5009 MHz		-69		dBc
	$f_{clk} = 200 \text{ MHz}; f_{out} = 10.0006 \text{ MHz}$		-71		dBc
	$f_{clk} = 1 \text{ MHz}; f_{out} = 100.021 \text{ KHz}$		83		dBc
	$f_{clk} = 10 \text{ MHz}$; $f_{out} = 500.0305 \text{ KHz}$		80		dBc
Spurious-Free Dynamic Range (SFDR)	$f_{clk} = 50 \text{ MHz}$; $f_{out} = 2.5002 \text{ MHz}$		73		dBc
	$f_{clk} = 100 \text{ MHz}; f_{out} = 2.5009 \text{ MHz}$		73		dBc
	$f_{clk} = 200 \text{ MHz}; f_{out} = 10.0006 \text{ MHz}$		68		dBc
Effective Number of Bits	$f_{clk} = 1 \text{ MHz}; f_{out} = 100.021 \text{ KHz}$		11.9		Bits
(ENOB)	$f_{clk} = 10 \text{ MHz}$; $f_{out} = 500.0305 \text{ KHz}$		11.5		Bits
TEMPERATURE RANGE		-55	25	125	°C
DIGITAL INPUT					
VIH : Logic-high input voltage		2.0		DVVDO	V
VIL : Logic-low input voltage		0.0		0.8	V
IIH : Logic-high input current		-10		10	μΑ
IIL : Logic-low input current		-10		10	μΑ

Note 2: Measured with $I_{OUTFS} = 20$ mA, $R_{LOAD} = 50 \ \Omega$ at I_{OUT+} and I_{OUT-} w.r.t. Ground and 100 Ω resistance between I_{OUT+} and I_{OUT+} , $f_{clock} = 200$ MSPS and $f_{in} = 41$ MHz digital sine wave applied at BIT11 to BIT0. **Note 3:** Measured with All positive and negative supplies are applied. The clock input is connected to ground. PWDN input is made low. Digital

inputs BIT11 to BIT0 are at '0' logic. Note 4: Nominal full-scale current, I_{FS} , equals 32x the I_{REF} current.

ABSOLUTE MAXIMUM RATINGS:

Parameter	With Respect To	Min.	Max.	Units
Digital Inputs (BIT11-BIT0) and CLOCK	DVSSO	-0.3	PDVDDO+0.3	V
Analog Output	AVSSO	-0.3	PAVDDO+0.3	V
AVDD	DVSS and AVSSO	-0.3	4.0	V
AVDDO	AVSSO	-0.3	4.0	V
DVDDO	DVSSO	-0.3	4.0	V
PAVDD	AVSSO	-0.3	2.0	V
DVDD	DVSSO	-0.3	2.0	V
AVSS	DVSS	-0.3	0.3	V
DVSSO	DVSS	-0.3	0.3	V
AVSSO	DVSS	-0.3	0.3	V
Storage Temperature		-65	150	°C

Table-5: Absolute Maximum Ratings*

• Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

TYPICAL TIMING DIAGRAM:

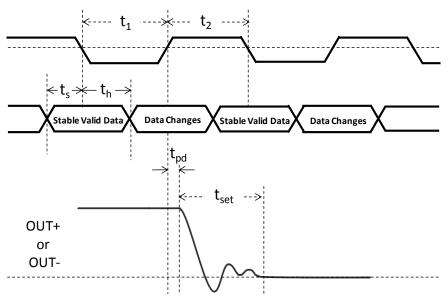
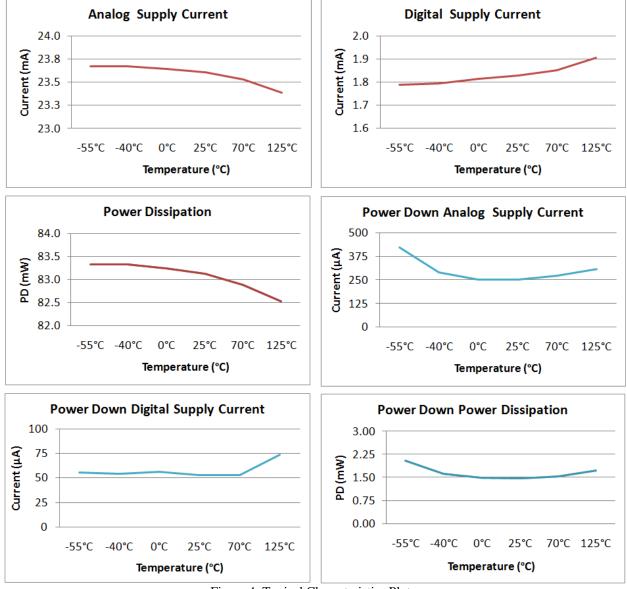



Figure-3: The typical timing diagram for DAC

Symbol	Parameter	Value	Unit
t ₁	Clock pulse low time	2.5	ns
t ₂	Clock pulse high time	2.5	ns
t _s	t _s Data setup time		ns
t _h	Data Hold Time	1	ns
t _{pd}	Propagation Delay Time	1	ns
t _{set} Output Settling Time to 1%		< 30	ns

TYPICAL CHARACTERISTICS PLOTS:

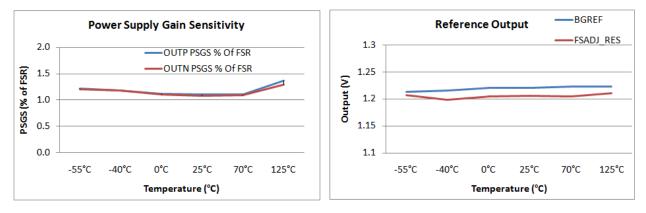
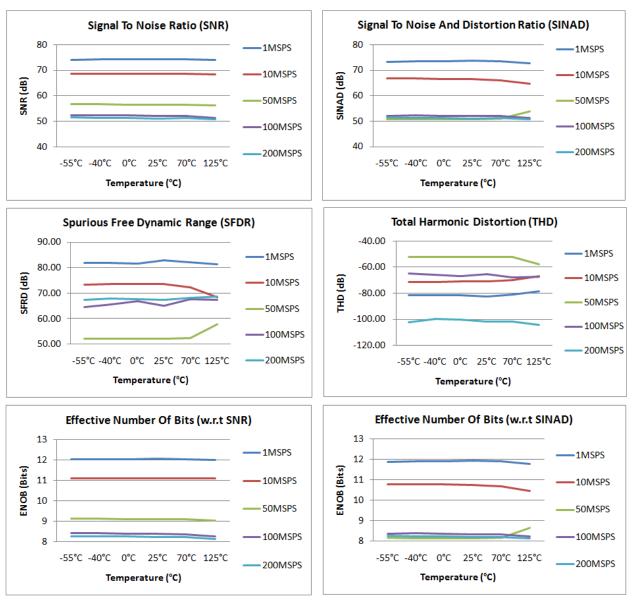
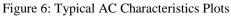




Figure 5: Power Supply Gain Sensitivity and Reference Output Voltage Plots

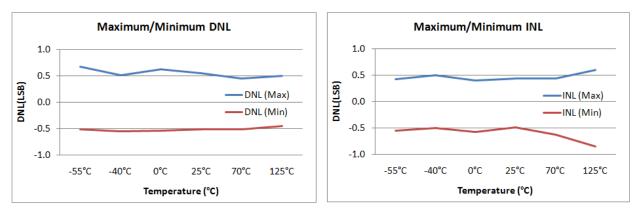


Figure 7: DNL/INL (Min/Max) Plots

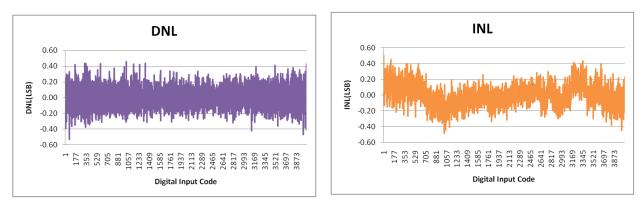


Figure 8: DNL and INL Plots (25°C)

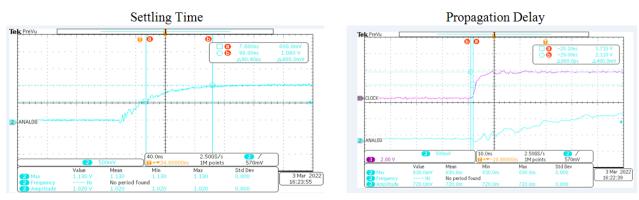


Figure 9: Settling Time and Propagation Delay

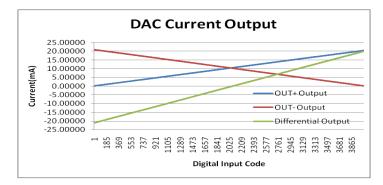


Figure 10: DAC Output currents (25°C)

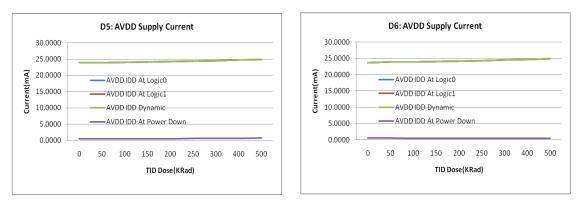


Figure11: AVDD Supply Current with Different TID Dose

OVERVIEW:

SC9023-0 is 12-Bit 200MSPS Current Steering Digital to Analog Converter. Segmentation architecture is being used in the design. Five MSB bits are unary decoded and remaining seven bits are binary decoded. Block diagram of the DAC is shown in Fig.1. A 12-bit data from the external world is coming into latch. Latch stores the data at the falling edge of the clock. After that thermometer decoder encodes five MSB bits into thermometer code. Thermometer blocks generate finite delay and to match the delay among binary and thermometer decoded output, dummy decoder has been used for the remaining seven LSB bits. These outputs from Thermometer decoder and dummy decoder derives latch outputs which generate differential output for select current switches connected between the output and current sources. Based on the input bits, DAC will provide differential output current. Sum of differential current is fixed and it is equal to full scale output current of the DAC.

TERMINOLOGY

Integral Nonlinearity (INL)

Linearity error is defined as the maximum deviation of the actual analog output from the ideal output, determined by a straight line drawn from zero to full scale.

Differential Nonlinearity (DNL)

DNL is the measure of the variation in analog value, normalized to full scale, associated with a 1 LSB change in digital input code.

Gain Error

The difference between the actual and ideal output span. The actual span is determined by the output when all inputs are set to 1s minus the output when all inputs are set to 0s.

Offset Error

The deviation of the output current from the ideal of zero is called the offset error. For I_{OUT+} , 0mA output is expected when the inputs are all 0s. For I_{OUT-} , 0mA output is expected when all inputs are set to 1s.

Settling Time

The time required for the output to reach and remain within a specified error band about its final value, measured from the start of the output transition.

Spurious-Free Dynamic Range (SFDR)

The difference, in dB, between the rms amplitude of the output signal and the peak spurious signal over the specified bandwidth.

Total Harmonic Distortion (THD)

THD is the ratio of the rms sum of the first six harmonic components to the rms value of the measured input signal. It is expressed as a percentage or in decibels (dB).

Power Supply Gain Sensitivity (PSGS)

Power supply gain sensitivity is defined as change in percentage of full scale output current w.r.t. supply variation.

$$PSGS_{from 3.3 to 3.135} = \frac{I_{FS(3.3V)} - I_{FS(3.135V)}}{I_{FS(IDEAL)}} \times 100$$
$$PSGS_{from 3.3 to 3.465} = \frac{I_{FS(3.3V)} - I_{FS(3.465V)}}{I_{FS(IDEAL)}} \times 100$$

Signal-to-Noise Ratio (SNR)

$$SNR = 10 \log \left(\frac{Signal Power}{Noise Power} \right)$$

Signal-to-Noise And Distortion (SINAD)

$$SINAD = 10log \left(\frac{Signal Power}{Noise Power + Distortion Power} \right)$$

Effective Number of Bits (ENOB)

$$ENOB = \left(\frac{SINAD - 1.76}{6.02}\right)$$

APPLICATION DIAGRAM:

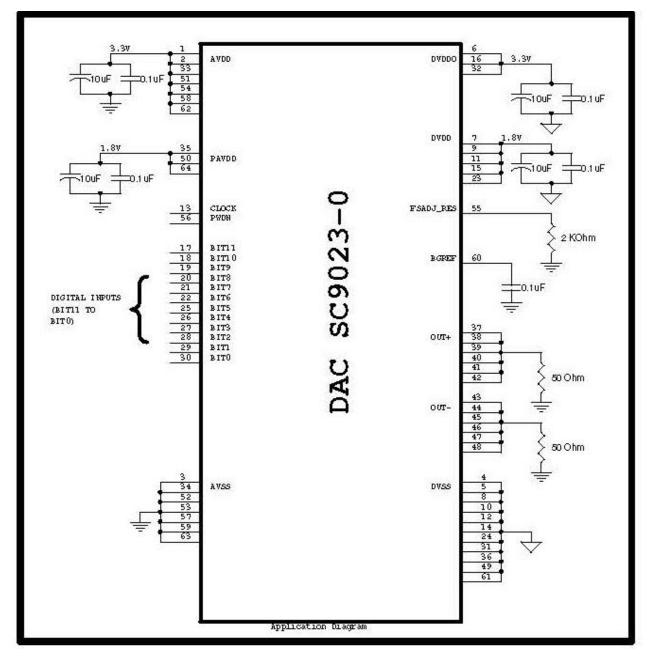


Figure-12: Application Diagram

PACKAGE DRAWING (64 Pin CQFP):

All linear dimensions are in inches (mm.)

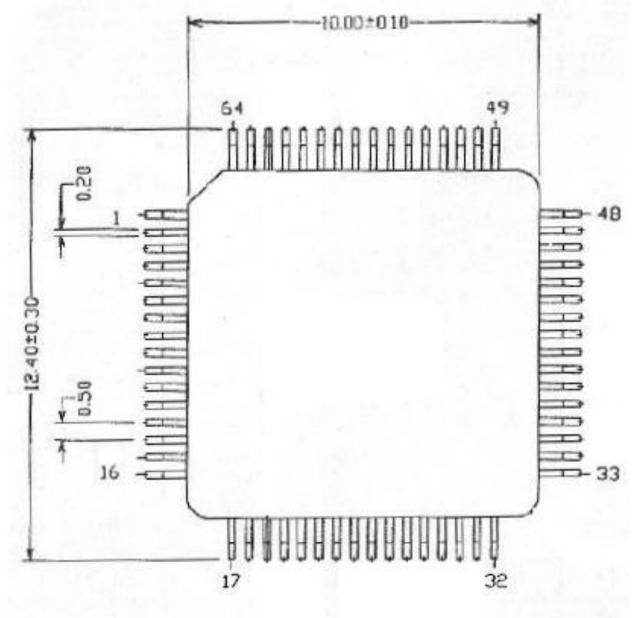


Figure-13: Package Drawing

REVISION HISTORY:

	Revision History					
SI. No.	Version	Date of release	Description			
1	1.0	March 22,2022				
2						
3						
4						

DISCLAIMER

Semi Conductor Laboratory (SCL) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and specifications, and to discontinue any product. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. Reproduction of significant portions of SCL information in SCL data sheets is permissible only if reproduction is without alteration and is accompanied by all associated conditions, limitations, and notices. SCL is not responsible or liable for such altered documentation.