RS422 Transceiver SC1604-0 Preliminary Datasheet

Version 1.0, April 2017

Semi-Conductor Laboratory

Government of India

PRODUCT DESCRIPTION:

RS422 (SC1604-0) is a low power differential line transceiver designed for multi-point data transmission standard RS422 applications. The CMOS design offers significant power saving over its bipolar counterpart without sacrificing ruggedness against ESD damage. It offers a choice of active-high or active-low inputs. The device is designed for line/bus transmission at switching rates up to 5 MHz

FEATURES:

- Operates From Single 3.3V V_{CC}
- Switching Rates up to 5 MHz
- Transmission Rate to 10 Mbps
- Designed for RS422 applications
- Fail safe feature guarantees high output state when receiver inputs are left open.
- Common Mode Output Voltage Range: 0V to 3V

DEVICE SUMMARY:

Silicon No.	Package	Pins	Lead Finish	Description	Temp. range
SC1604-0	DIP	16	Gold	RS422 Transceiver	-40 to +125 °C

Table 1: Device Summary

PIN CONFIGURATION:

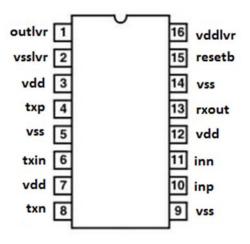


Figure-1: Device Pin diagram

LOGIC DIAGRAM:

Figure-2: Device Logic Diagram

PIN DESCRIPTION:

SYMBOL	PIN	PIN DESCRIPTION
vdd	3,7,12	Supply Voltage (3.3V)
vddlvr	16	3.3V supply of LVR
resetb	15	Active low regulator reset
txin	6	Driver input
txp, txn	4, 8	Driver outputs
rxout	13	Receiver output
outlvr	1	Output of LVR
Inp, inn	10, 11	Receiver inputs
vss & vsslvr	5,9,14 & 2	Ground (0V)

Table-2: Device Pin description

FUNCTIONAL TABLE:

Dri	ver		Receiver			
Input	Output		Inp	Output		
1	Н	L	1	0	Н	
0	L	Н	0	1	L	

Table 3: Truth table

BASIC DC-PARAMETER TESTING & TEST CONDITIONS:

Test name	Test Parameter	Pins Tested	Force	Min	Typ.	Max	Unit
ESD Diode	Positive Diode	All Input /	100uA	416.175		541.205	mV
Test	Negative Diode	All Input / Output Pins	-100uA	-569.982		-479.224	
Static supply	$ m I_{DD}$	All inputs Low	VDD = 3.3V VIL=0V		944.074		nA
current		All Inputs High	VDD = 3.3V VIH=3.3V		944.074		
Static supply	I _{DD LVR}	All inputs Low	VDD = 3.3V VIL=0V	4.541		4.749	mA
current of LVR		All Inputs High	VDD = 3.3V VIH=3.3V	4.541		4.673	

^{*0.1}uF Capacitor must be between connected lyrout and vsslyr Pins.

	IIL	Inputs (txin, Resetb)	$V_{IN} = 0V$	-0.170	-0.063	
Input Gate Leakage Test	IIH		$V_{IN} = 3.3V$	-0.039	0.016	μΑ
(VDD = 3.3V)	IIL	Inputs (inn, inp)	$V_{IN} = 0V$	-7.071	-2.924	
	IIH		$V_{IN} = 3.3V$	2.391	7.561	
V	Outset Valtaga I am	Load = 0.1mA		0.698	21.973	μA
$V_{ m OL}$	Output Voltage Low	Load = 20mA		275.808	311.104	m v
V	Output Voltage High	Load = -0.1 mA		3.205	3.287	V
V_{OH}	Output Voltage High	tput Voltage High Load =-20mA		2.860	2.890	V

DRIVER ELECTRICAL AND SWITCHING CHARACTERISTICS

Symbol	Parameter	Test Condition		Min	Typical	Max	Unit
		$R_L = 100 \Omega$	Driver Input = 0V		-2.537		-
Vod (SS)	Steady-State differential	Refer Figure 3	Driver Input = 3.3V		2.547		
[¥ OD (SS)]	output voltage	$V_{CM} = 0V \text{ to } 3V$	Driver Input = 0V		-2.032		
		Refer Figure 4	Driver Input = 3V		2.049		V
AlVan gal	Change in magnitude of Steady-State differential	$R_L = 100 \Omega$	Driver Input = 0V		0.010		
$\Delta V_{OD (SS)} $	output voltage between states	Refer Figure 3	Driver Input = 3.3V		0.017		
1 7	Differential output voltage overshoot and undershoot	$\begin{aligned} R_L &= 100~\Omega \\ C_L &= 50~pF \\ \text{Input PRR=500KHz,} \\ \text{50\% Duty Cycle} \\ \text{Refer Figure 6} \end{aligned}$	Positive Overshoot		7.933		%
Vod (RING)			Negative Overshoot		19.04	<i>y</i>	70
V _{OC (PP)}	Peak-to-peak common-	-			To be		
7 00 (11)	mode output voltage				done		
Voc (SS)	Steady-state common- mode output voltage		-		To be done		
Idd (D)	Dynamic Current Supply Test	$V_{DD} = 3.3V$ Input Pulse Rate = 5 MHz			4.9		mA
t _{PLH}	Propagation delay time, low-to-high-level output		= 100 Ω		6.2		ns
$t_{ m PHL}$	Propagation delay time, high-to-low-level output	$C_L = 50 \text{ pF}$			7.8		115

RECEIVER	FLECTRICAL	AND SWITCHING	CHARACTERISTICS

Parameter	Test Condition	Min	Typical	Max	Unit
Input Sensitivity	$V_{CM}=0$ to $3V$	50	200		mV
Input Hysteresis	V _{CM} = 1.65V, Refer Figure 9		43		mV
Dynamic Current Supply Test	$V_{DD} = 3.3V$ Input Pulse Rate = 5 MHz		4.8		mA
tplн	Propagation Delay		10.8		ns
t _{PHL}	Refer Figure 10		8.8		ns
Duty Cycle			49.88		%

DRIVER TEST CIRCUITS AND WAVEFORMS:

Figure 3: Driver VOD Test Circuit Figure 4: Driver VOC Test Circuit

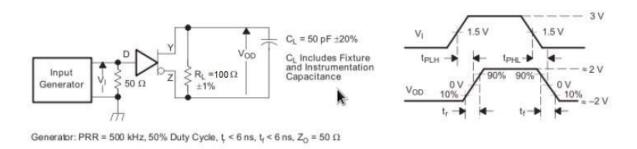


Figure 5: Driver Propagation Delay Test Circuit and Waveforms

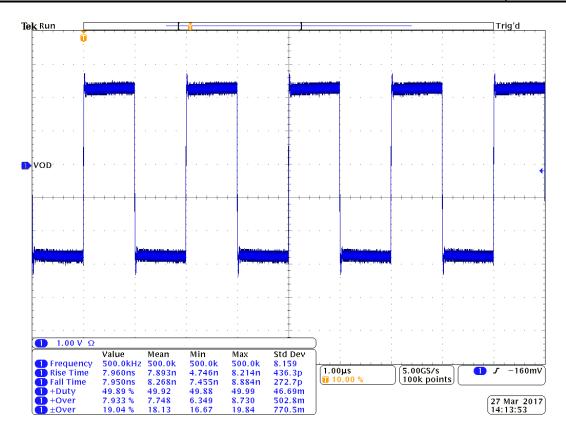


Figure6: The Driver VOD (Ring) Test Waveform

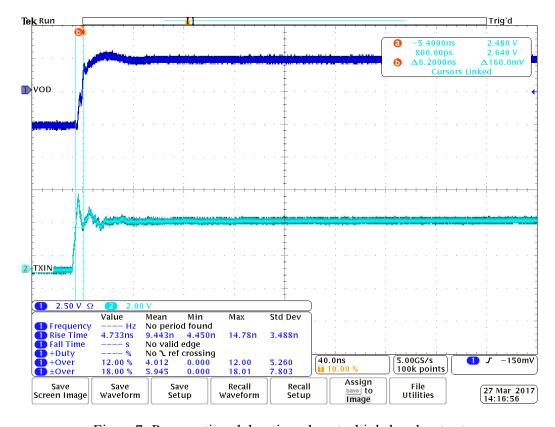


Figure 7: Propagation delay time, low-to-high-level output



Figure8: Propagation delay time, high-to-low-level output

RECEIVER TEST CIRCUIT AND WAVEFORM:

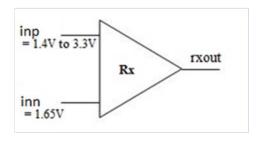


Figure9: Receiver Input Hysteresis Test Circuit

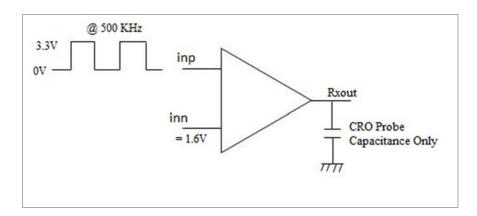


Figure 10: Receiver Propagation Delay Test Circuit

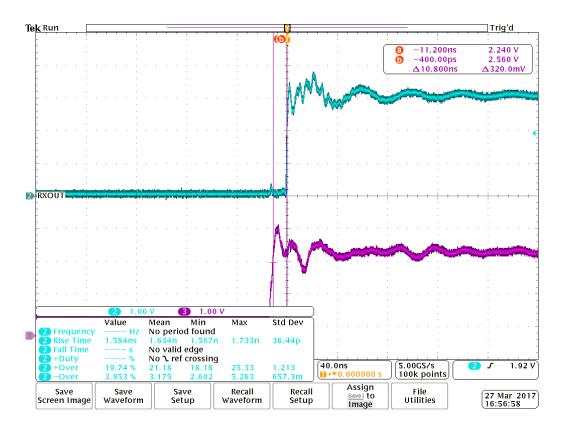


Figure 11: Propagation delay time, low-to-high-level output

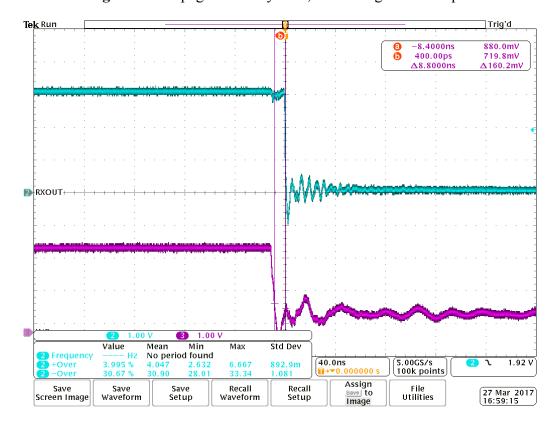


Figure 12: Propagation delay time, high-to-low-level output