
Operational Amplifier

(SC1403-0)

DATA SHEET *Version 1.0, Dec' 2015*

Semi–Conductor Laboratory Government of India S.A.S. Nagar, Punjab-160071 www.scl.gov.in

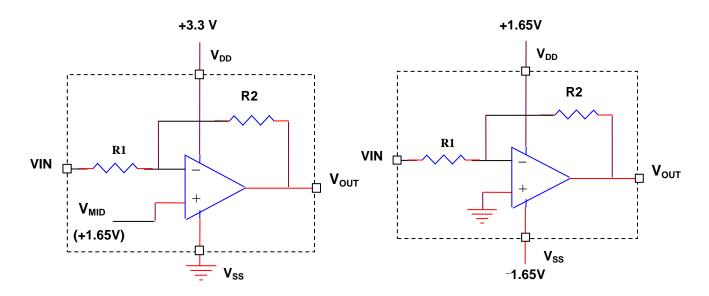
PRODUCT DESCRIPTION:

SC1403-0 is an op amp that is designed as an IP block. This chip consists of 2 nos. of internally compensated CMOS input op-amps in folded cascade architecture. First op-amp has internal bias resistor whereas second op-amp requires approx. $33k\Omega$ external bias resistor with V_{DD}.

FEATURES:

- Operating Supply Voltage: 3.0V± 0.3V
- Open loop Gain > 80db
- Settling Time (0.05%) < 40ns
- Unity Gain Bandwidth > 20MHz
- Power Dissipation < 15mW
- Load Resistance > 1KΩ
- Load Capacitance < 30pF
- Operating Temperature: -55°C to 125°C
- Ceramic 16-pin DIP packages

1	CHIP_OUT	NC	16
2			15
3		NC NC	14
4		NC	13
5	CHIP_VSS		12
6	NC	CHIP_OUT1 CHIP_VDD1	11
7	CHIP_VSS1	CHIP_BIAS	10
8	CHIP_INP1	CHIP INN1	9


DEVICE PIN DIAGRAM:

DEVICE PIN DESCRIPTION:

DIE – 1			DIE – 2		
Pin No.	Pin Name	Description	Pin No.	Pin Name	Description
1	CHIP_OUT	Output	7	CHIP_VSS	Supply Ground
2	CHIP_VDD	Supply Power	8	CHIP_INP	Non-inverting Input
3	CHIP_INN	Inverting Input	9	CHIP_INN	Inverting Input
4	CHIP_INP	Non-inverting Input	10	CHIP_BIAS	Bias Resister (33K)
5	CHIP_VSS	Supply Ground	11	CHIP_VDD	Supply Power
6,13,14,15,16	NC	Not connected	12	CHIP_OUT	Output

OP AMP IN SINGLE SUPPLY AND DUAL SUPPLY CONFIGURATION:

RECOMMENDED OPERATING CONDITIONS:

SYMBOL	PARAMETER	Min	Max	Unit
V _{DD}	Supply Voltage	3.0	3.6	V
V _{IN}	IN Input Voltage Range		V_{DD}	V
I _{OH}	I _{OH} High level output current (Source)		-0.8	mA
I _{OL}	I _{OL} Low level output current (Sink)		12	mA
T _{AMB} Operating Ambient Temperature		-55	125	°C

ABSOLUTE MAXIMUM RATINGS (1):

Over operating free-air temperature range (unless otherwise noted),

Symbol	Parameter	Unit
V _{DD}	Supply Voltage Range	-0.5V to 4.3V
V _{IN} Input Voltage Range		–0.5V to $V_{\text{DD}}\text{+}0.5\text{V}$
T _J	Max. Junction Temperature	150°C
TstgStorage Temperature Range		–65°C to 150°C

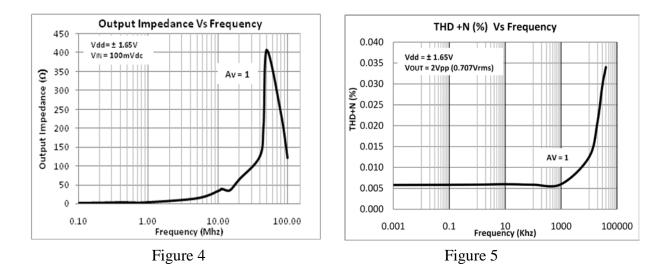
⁽¹⁾ Stresses beyond those listed under *absolute maximum ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *recommended operating conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DC ELECTRICAL SPECIFICATIONS:

 $@V_{dd} = \pm 1.65V, V_{CM}=0V, T_A = 25^{\circ}C$

Specifications	Symbol	Test Inputs	Test Conditions	Test Results (Typ.)	Unit
INPUT CHARACTE	RISTICS				
Input Offset V _{OS}				-6.70	mV
Input Offset Current	I _{OS}	Test Method 4001.1 (Table - 5)	R2/R1 = 30K/100 R3 = 10K Test Circuit-1	0.664	μA
Input Bias Current	I _{IB}			0.355	μA
Input Voltage	VIH	VIN+ (RAMP) = 3.6Vpp	G = +1	0.935	V
Range (ICMR)	V _{IL}	(f = 100Khz)	Test Circuit-2	-1.586	V
Common Mode Rejection Ratio	CMRR	Test Method 4003.1	R2/R1 = 30K/100	34.41	dB
Large Signal Voltage Gain	A _{OL}	Test Method 4004.1	Test Circuit-1	83.52	dB
Offset Voltage Drift	$\Delta V_{OS} / \Delta T$	Test Method 4001.1	-40°C to 125°C	4.0	µV/⁰C
OUTPUT CHARAC	TERISTICS				
Output	VOU	Vdd = ±1.65V	IL = 1mA, ACL = 1	0.982	V
Voltage High	VOH		IL = 10mA, ACL = 1	0.958	V
Output		VIN+ (DC) = 2.0V	IL = 1mA, ACL = 1	-1.647	V
Voltage Low	VOL		IL = 10mA, ACL = 1	-1.338	V
Output Short	I _{OUT+} (source)	Vdd = ±1.65V V _{IN+} = 1.65V	G = +1	31.36	mA
Circuit Current	I _{OUT-} (sink)	Vdd = ±1.65V V _{IN+} = -1.65V	o/p short with GND Test Circuit-2	30.65	mA
Output Impedance	Z _{OUT}	f = 50Mhz	f = 50Mhz Test circuit 4		Ohm
Output Resistance			Test circuit 4	0.05	Ohm
POWER SUPPLY	Γ				
Supply Current	Idd	$Vdd = \pm 1.65V$	G = +1 Test Circuit-2 (No Load)	± 4.2	mA
Power Dissipation	Pd	V _{OUT} = 0V		14.0	mW
PSRR	PSRR+	Vdd+ =1.65 ± 0.165V Vdd- = -1.65V	Test Circuit-1	-53.14	dB
FORA	PSRR-	Vdd+ = 1.65V Vdd- = -1.65 ± 0.165V		-53.89	

AC ELECTRICAL SPECIFICATIONS:


 $@V_{dd} = \pm 1.65V, V_{CM}=0V, T_A = 25^{\circ}C$

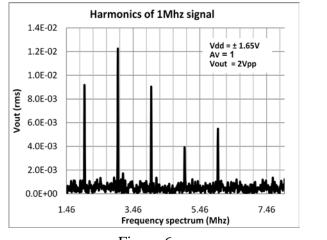
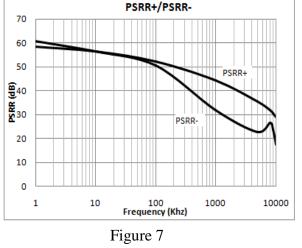

Specifications	Symbol	Test Inputs	Test Conditions	Test Results (Typ.)	Unit	
DYNAMIC CHARACTERISTICS						
Slew Rate (Rise)	SR+			70	V/us	
Slew Rate (Fall)	SR-	Vdd+ = 1.65V Vdd- = -1.65V VIN+ (SQUARE) = 3Vpp (f = 1Mhz)	G = +1 RL = 10K Test Circuit-2	74	V/us	
Full Power Bandwidth	FPBW	(1 = 10002)		11	MHz	
Gain Bandwidth Product	GBP	VOUT(SINE) = 400mVpp (freq sweep)	G = +1 Test Circuit-2	50	MHz	
Unity Gain Bandwidth	UGB	VIN+(SINE) = 100mVpp (freq sweep)	R2/R1 = 9K/1K VIN = VOUT Test Circuit-3	32	MHz	
Settling Time to 0.05% (Rise)	TSS	VOUT = 1V STEP	G = +1, RL = 1K , CL = 30pF	65	nsec	
Phase Margin	Phase Margin ϕM $Vdd = \pm 1.65 V$ VOUT(SINE) = 1 Vpp $G = +1$		G = +1	80	Degree	
NOISE PERFORMANCE						
Total Harmonic	THD + N	VOUT = 1V STEP	G = +1	0.006	%	
Distortion + Noise	F = 1 Mhz	-84.44	dB			

Table 3



TYPICAL CHARACTERISTICS:

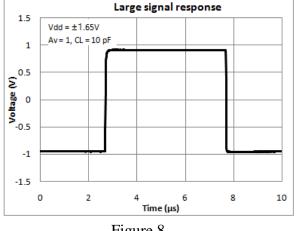
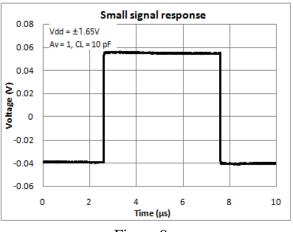



Figure 8

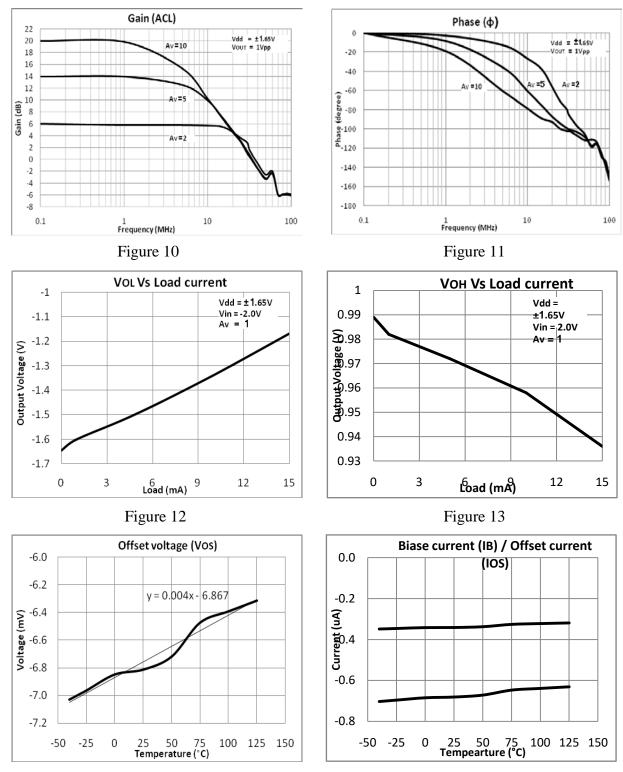


Figure 13

TEST METHOD:

S.N.	Test	Test method (MIL-STD-883E)	Test circuit
1	Input offset voltage (V _{IO})	Method 4001.1	Test circuit 1
2	Input offset current (I _{IO})	Method 4001.1	Test circuit 1
3	Input bias current (I_{IB})	Method 4001.1	Test circuit 1
4	CMMR	Method 4003.1	Test circuit 1
5	+PSRR/ -PSRR	Method 4003.1	Test circuit 1
6	Open Loop Gain	Method 4004.1	Test circuit 1
7	Slew Rate (S.R.)	Method 4002.1	Test circuit 2
8	Phase Margin	Method 4002.1	Test circuit 2
9	FPBW	Method 4002.1	Test circuit 2
10	UGB	Method 4004.1	Test circuit 3
12	Output Impedance	Method 4005.1	Test circuit 4
13	Power Dissipation	Method 4005.1	Test circuit 4
14	ICMR		Test circuit 2
15	VOH/VOL		Test circuit 2
16	+I _{SC} / -I _{SC}		Test circuit 2

Table 5

TEST CIRCUITS:

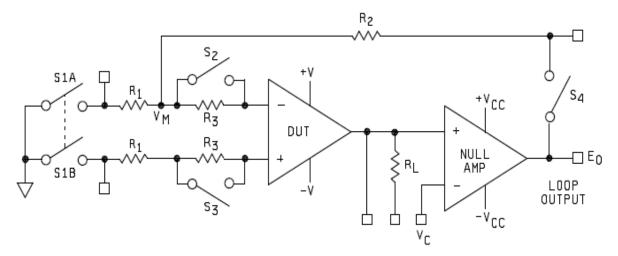
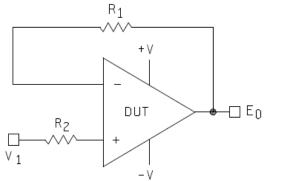



Figure 14: Test Circuit 1

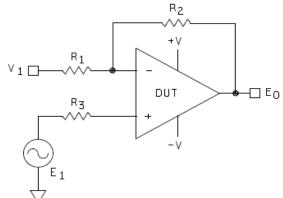
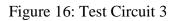



Figure 15: Test Circuit 2

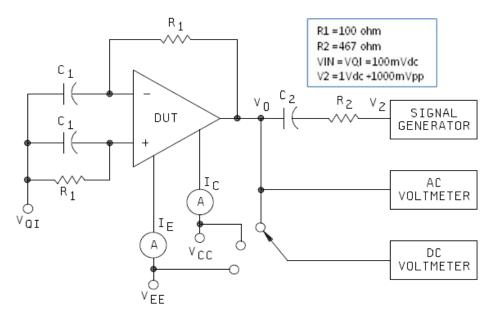
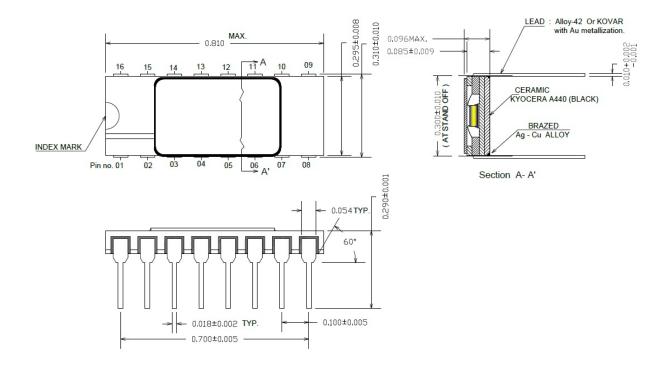



Figure 17: Test Circuit 4

MECHANICAL PACKAGE DRAWING:

16 PIN DIP PACKAGE

IMPORTANT NOTICE

Semi Conductor Laboratory (SCL) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and specifications, and to discontinue any product. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. Reproduction of significant portions of SCL information in SCL data sheets is permissible only if reproduction is without alteration and is accompanied by all associated conditions, limitations, and notices. SCL is not responsible or liable for such altered documentation.