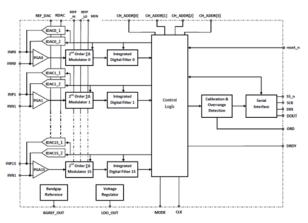


# 16 CHANNELS SIMULTANEOUS SAMPLING 24 BIT $\Sigma$ - $\Delta$ ADC (MULTI-CORE RDAS1.1)

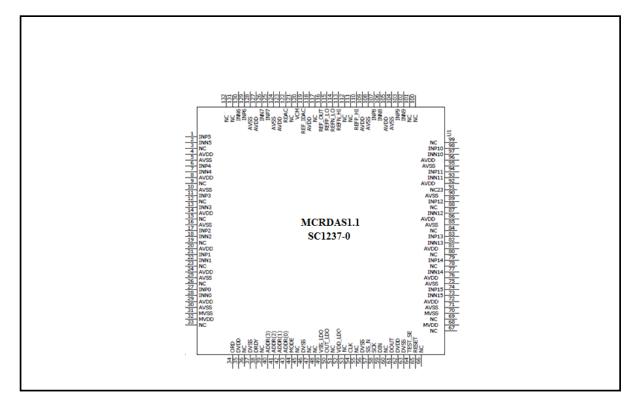
### FEATURES:

- Sixteen ΣΔ ADCs
  - 24 Bits resolution
  - No missing code<sup>1</sup>
  - PGA from 1 to 128 (Binary Steps)
  - Programmable Output Data Rate
  - 0.005% INL
  - 19 Bits ENOB (PGA = 1, OSR=2047)
  - On-chip Offset and Gain Calibrations
  - Data Format Selection
- Thirty Two IDACs
  - 8 Bits resolution
  - Programmable Full Scale Ranges of 0.5 mA, 1mA and 2mA.
- Precision on-chip 1.22V Reference Accuracy: 1.7%, Drift: ±80ppm
- > On Chip 1.8V Voltage Regulator
- Program and Flight Mode Operation
- > SPI Compatible
- > 3.0V TO 3.6V
- > 180nm SCL CMOS standard logic process
- θ<sub>JC</sub> =0.88°C/W




Notes: (1) Tested and verified upto 14 Bits.

#### **DESCRIPTION:**


Multi-Core Reconfigurable Data Acquisition System (Multi Core RDAS) is a fully integrated data acquisition system. It incorporates 16 high resolution Sigma Delta ( $\Sigma\Delta$ ) ADCs, 32 Eight Bits IDACs along with the calibration and overrange detection unit for each  $\Sigma\Delta$  ADC. User can communicate with any of the ADC through SPI interface using four bits channel address. There are two modes of operation: Program mode and Flight mode. User can select any of the modes through a primary input pin. During Program Mode, user can program all the ADC cores and IDACs and during flight mode user can read the data continuously.

Each  $\Sigma\Delta$  ADC uses a second order modulator with a Programmable Gain Amplifier (PGA) and on-chip offset and gain calibration.  $\Sigma\Delta$ Modulator converts the analog input signal into a single bit stream of 1s and 0s where the density of 1s and 0s represents the digitized information. The single bit data from modulator is then processed by a digital *Sinc*<sup>3</sup> filter to produce a 24 bits digital output. The output data rate of  $\Sigma\Delta$  ADC is programmable.

Each 8-bits current DAC is available with three different ranges: 0.5mA, 1mA and 2mA.



#### **PIN CONFIGURATION:**



#### **PIN DESCRIPTIONS:**

| PIN<br>NO. | NAME | Analog/<br>Digital    | Description                                                                     |
|------------|------|-----------------------|---------------------------------------------------------------------------------|
| 1          | INP5 | Analog Input / Output | ADC 5 Positive Input / Current DAC 5 1st Output(Note-1)                         |
| 2          | INN5 | Analog Input / Output | ADC 5 Negative Input / Current DAC 5 2 <sup>nd</sup> Output <sup>(Note-1)</sup> |
| 3          | NC   | -                     | Not Connected                                                                   |
| 4          | AVDD | Analog                | 3.3 V – Analog Supply                                                           |
| 5          | AVSS | Analog                | 0 V – Analog Ground                                                             |
| 6          | INP4 | Analog Input / Output | ADC 4 Positive Input / Current DAC 4 1 <sup>st</sup> Output <sup>(Note-1)</sup> |
| 7          | INN4 | Analog Input / Output | ADC 4 Negative Input / Current DAC 4 2 <sup>nd</sup> Output <sup>(Note-1)</sup> |
| 8          | AVDD | Analog                | 3.3 V – Analog Supply                                                           |
| 9          | NC   | -                     | Not Connected                                                                   |
| 10         | AVSS | Analog                | 0 V – Analog Ground                                                             |
| 11         | INP3 | Analog Input / Output | ADC 3 Positive Input / Current DAC 3 1 <sup>st</sup> Output <sup>(Note-1)</sup> |
| 12         | NC   | -                     | Not Connected                                                                   |
| 13         | INN3 | Analog Input / Output | ADC 3 Negative Input / Current DAC 3 2 <sup>nd</sup> Output <sup>(Note-1)</sup> |
| 14         | AVDD | Analog                | 3.3 V – Analog Supply                                                           |
| 15         | NC   | -                     | Not Connected                                                                   |
| 16         | AVSS | Analog                | 0 V – Analog Ground                                                             |
| 17         | INP2 | Analog Input / Output | ADC 2 Positive Input / Current DAC 2 1 <sup>st</sup> Output <sup>(Note-1)</sup> |
| 18         | INN2 | Analog Input / Output | ADC 2 Negative Input / Current DAC 2 2 <sup>nd</sup> Output <sup>(Note-1)</sup> |
| 19         | NC   | -                     | Not Connected                                                                   |
| 20         | AVDD | Analog                | 3.3 V – Analog Supply                                                           |
| 21         | INP1 | Analog Input / Output | ADC 1 Positive Input / Current DAC 1 1 <sup>st</sup> Output (Note-1)            |
| 22         | INN1 | Analog Input / Output | ADC 1 Negative Input / Current DAC 1 2 <sup>nd</sup> Output (Note-1)            |
| 23         | NC   | -                     | Not Connected                                                                   |
| 24         | AVDD | Analog                | 3.3 V – Analog Supply                                                           |

| 25   AVSS   Analog   0 V – Analog Ground     26   NC   -   Not Connected     27   INP0   Analog Input / Output   ADC O Positive Input / Current DAC 0 1 <sup>st</sup> Output <sup>Real</sup> 28   AVDD   Analog   3.3 V – Analog Supply     30   AVSS   Analog   0 V – Analog Ground     31   MVSS   Analog   0 V – Analog Ground     32   MVDD   Analog   3.3 V – It can be shorted to AVDS. Mixed Signal Ground     33   NC   -   Not Connected     34   ORD   Digital Output   Test Pin – Can be left open     35   DVDD   Digital   0 V – Digital Ground     36   NC   -   Not Connected     37   DVSS   Digital Output: Active   Data Ready Signal     38   DRDY   Digital Input   4 <sup>th</sup> bit of Channel Address to select any of 16 ADC     40   ADDR[3]   Digital Input   2 <sup>th</sup> bit of Channel Address to select any of 16 ADC     41   ADDR[2]   Digital Input   2 <sup>th</sup> bit of Channel Address to select any of 16 ADC     42   ADDR[0]   Digital Input   1 <sup>th</sup> bit of Channel Address                                                                                                           |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 28   INN0   Analog Input / Output   ADC 0 Negative Input / Current DAC 0 2 <sup>nd</sup> Output <sup>10</sup> 29   AVDD   Analog   3.3 V – Analog Supply     30   AVSS   Analog   0 V – Analog Ground     31   MVSS   Analog   0 V – Lt can be shorted to AVSS. Mixed Signal Gro     32   MVDD   Analog   3.3 V – It can be shorted to AVDD. Mixed Signal Gro     33   NC   -   Not Connected     34   ORD   Digital Output   Test Pin – Can be left open     35   DVDD   Digital Output   Test Pin – Can be left open     36   NC   -   Not Connected     37   DVSS   Digital Output: Active   Data Ready Signal     38   DRC   Not Connected   Data Ready Signal     40   ADDR[3]   Digital Input   4 <sup>th</sup> bit of Channel Address to select any of 16 ADC     41   ADDR[1]   Digital Input   2 <sup>th</sup> bit of Channel Address to select any of 16 ADC     43   ADDR[2]   Digital Input   2 <sup>th</sup> bit of Channel Address to select any of 16 ADC     44   MODE   Digital Input   1 <sup>th</sup> bit of Channel Address to select any of 16 ADC                                                                        |            |
| 28   INN0   Analog Input / Output   ADC 0 Negative Input / Current DAC 0 2 <sup>nd</sup> Output <sup>10</sup> 29   AVDD   Analog   3.3 V – Analog Supply     30   AVSS   Analog   0 V – Analog Ground     31   MVSS   Analog   0 V – Lt can be shorted to AVSS. Mixed Signal Gro     32   MVDD   Analog   3.3 V – It can be shorted to AVDD. Mixed Signal Gro     33   NC   -   Not Connected     34   ORD   Digital Output   Test Pin – Can be left open     35   DVDD   Digital Output   Test Pin – Can be left open     36   NC   -   Not Connected     37   DVSS   Digital Input   Ath bit of Channel Address to select any of 16 ADC     38   NC   -   Not Connected     40   ADDR[3]   Digital Input   3 <sup>dh</sup> bit of Channel Address to select any of 16 ADC     41   ADDR[1]   Digital Input   2 <sup>dh</sup> bit of Channel Address to select any of 16 ADC     43   ADDR[0]   Digital Input   1 <sup>dh</sup> bit of Channel Address to select any of 16 ADC     44   MODE   Digital Input   1 <sup>dh</sup> bit of Channel Address to select any of 16 ADC                                                                 | -1)        |
| 29   AVDD   Analog   3.3 V – Analog Ground     30   AVSS   Analog   0 V – Analog Ground     31   MVSS   Analog   0 V – It can be shorted to AVSS. Mixed Signal Gro     32   MVDD   Analog   3.3 V – It can be shorted to AVSS. Mixed Signal Gro     33   NC   -   Not Connected     34   ORD   Digital   3.3 V – Digital PAD Supply     36   NC   -   Not Connected     37   DVSS   Digital Output: Active   Data Ready Signal     38   DRDY   Digital Input   4 <sup>th</sup> bit of Channel Address to select any of 16 ADC     40   ADDR[3]   Digital Input   3 <sup>th</sup> bit of Channel Address to select any of 16 ADC     41   ADDR[2]   Digital Input   3 <sup>th</sup> bit of Channel Address to select any of 16 ADC     42   ADDR[1]   Digital Input   3 <sup>th</sup> bit of Channel Address to select any of 16 ADC     43   ADDR[0]   Digital Input   1 <sup>th</sup> bit of Channel Address to select any of 16 ADC     44   MODE   Digital Input   Mode Selection to select Program Mode or Flight N     45   NC   -   Not Connected     46                                                                                 | ote-1)     |
| 31     MVSS     Analog     0 V - It can be shorted to AVSS. Mixed Signal Gro       32     MVDD     Analog     3.3 V - It can be shorted to AVDD. Mixed Signal S       33     NC     -     Not Connected       34     ORD     Digital Output     Test Pin - Can be left open       35     DVDD     Digital Output     Test Pin - Can be left open       36     NC     -     Not Connected       37     DVSS     Digital Output: Active<br>Low     Data Ready Signal       38     NC     -     Not Connected       40     ADDR[3]     Digital Input     4 <sup>th</sup> bit of Channel Address to select any of 16 ADC       41     ADDR[2]     Digital Input     2 <sup>th</sup> bit of Channel Address to select any of 16 ADC       42     ADDR[0]     Digital Input     2 <sup>th</sup> bit of Channel Address to select any of 16 ADC       44     MODE     Digital Input     1 <sup>th</sup> bit of Channel Address to select any of 16 ADC       45     NC     -     Not Connected       46     DVSS     Digital Input     Mode Selection to select Program Mode or Flight N       47     NC     -                                        |            |
| 31     MVSS     Analog     0 V - It can be shorted to AVSS. Mixed Signal Gro       32     MVDD     Analog     3.3 V - It can be shorted to AVDD. Mixed Signal S       33     NC     -     Not Connected       34     ORD     Digital Output     Test Pin - Can be left open       35     DVDD     Digital Output     Test Pin - Can be left open       36     NC     -     Not Connected       37     DVSS     Digital Output: Active<br>Low     Data Ready Signal       38     NC     -     Not Connected       40     ADDR[3]     Digital Input     4 <sup>th</sup> bit of Channel Address to select any of 16 ADC       41     ADDR[2]     Digital Input     2 <sup>th</sup> bit of Channel Address to select any of 16 ADC       42     ADDR[0]     Digital Input     2 <sup>th</sup> bit of Channel Address to select any of 16 ADC       44     MODE     Digital Input     1 <sup>th</sup> bit of Channel Address to select any of 16 ADC       45     NC     -     Not Connected       46     DVSS     Digital Input     Mode Selection to select Program Mode or Flight N       47     NC     -                                        |            |
| 33   NC   -   Not Connected     34   ORD   Digital Output   Test Pin – Can be left open     35   DVDD   Digital Output   Test Pin – Can be left open     36   NC   -   Not Connected     37   DVSS   Digital Output: Active<br>Low   Data Ready Signal     39   NC   -   Not Connected     40   ADDR[3]   Digital Input   4 <sup>th</sup> bit of Channel Address to select any of 16 ADC     41   ADDR[2]   Digital Input   3 <sup>th</sup> bit of Channel Address to select any of 16 ADC     42   ADDR[0]   Digital Input   3 <sup>th</sup> bit of Channel Address to select any of 16 ADC     43   ADDR[0]   Digital Input   1 <sup>st</sup> bit of Channel Address to select any of 16 ADC     44   MODE   Digital Input   1 <sup>st</sup> bit of Channel Address to select any of 16 ADC     45   NC   -   Not Connected     46   DVSS   Digital Input   Mode Selection to select Program Mode or Flight N     47   NC   -   Not Connected     48   NC   -   Not Connected     50   OUT_LDO   Digital Input   ADC Master Cloc                                                                                                             | nd         |
| 34 ORD Digital Output Test Pin – Can be left open   35 DVDD Digital 3.3 V – Digital PAD Supply   36 NC - Not Connected   37 DVSS Digital Output: Active<br>Low Data Ready Signal   38 DRDY Digital Output: Active<br>Low Data Ready Signal   39 NC Not Connected   40 ADDR[3] Digital Input 4 <sup>th</sup> bit of Channel Address to select any of 16 ADC   41 ADDR[2] Digital Input 2 <sup>nd</sup> bit of Channel Address to select any of 16 ADC   42 ADDR[1] Digital Input 1 <sup>st</sup> bit of Channel Address to select any of 16 ADC   43 ADDR[0] Digital Input 1 <sup>st</sup> bit of Channel Address to select any of 16 ADC   44 MODE Digital Input 1 <sup>st</sup> bit of Channel Address to select any of 16 ADC   44 MODE Digital Input 1 <sup>st</sup> bit of Channel Address to select any of 16 ADC   44 MODE Digital Input 1 <sup>st</sup> bit of Channel Address to select any of 16 ADC   44 MODE Digital Input 1 <sup>st</sup> bit of Channel Address to select any of 16 ADC   45 NC - Not Connected   46 DVS Do Digital 0 V – Digital Ground   47 NC - Not Conne                                                      | pply       |
| 35   DVDD   Digital   3.3 V – Digital PAD Supply     36   NC   -   Not Connected     37   DVSS   Digital Output: Active<br>Low   Data Ready Signal     38   DRDY   Digital Output: Active<br>Low   Data Ready Signal     39   NC   Not Connected     40   ADDR[3]   Digital Input   4 <sup>th</sup> bit of Channel Address to select any of 16 ADC.     41   ADDR[1]   Digital Input   3 <sup>td</sup> bit of Channel Address to select any of 16 ADC.     42   ADDR[1]   Digital Input   1 <sup>st</sup> bit of Channel Address to select any of 16 ADC.     43   ADDR[0]   Digital Input   1 <sup>st</sup> bit of Channel Address to select any of 16 ADC.     44   MODE   Digital Input   Mode Selection to select Program Mode or Flight N     45   NC   -   Not Connected     46   DVSS   Digital   0 V – Digital Ground     47   NC   -   Not Connected     48   NC   -   Not Connected     49   VSS_LDO   Digital   0 V – LDO Ground. It can be shorted externally to DV     50   OUT_LDO   Digital Input   ADC Master Clock                                                                                                            | · · ·      |
| 36     NC     -     Not Connected       37     DVSS     Digital     0 V – Digital Ground       38     DRDY     Digital Output: Active<br>Low     Data Ready Signal       39     NC     Not Connected       40     ADDR[3]     Digital Input     4 <sup>th</sup> bit of Channel Address to select any of 16 ADC       41     ADDR[2]     Digital Input     3 <sup>rd</sup> bit of Channel Address to select any of 16 ADC       42     ADDR[1]     Digital Input     1 <sup>sd</sup> bit of Channel Address to select any of 16 ADC       43     ADDR[0]     Digital Input     1 <sup>sd</sup> bit of Channel Address to select any of 16 ADC       44     MODE     Digital Input     1 <sup>sd</sup> bit of Channel Address to select any of 16 ADC       44     MODE     Digital Input     1 <sup>sd</sup> bit of Channel Address to select any of 16 ADC       44     MODE     Digital Input     Mode Selection to select Program Mode or Flight N       45     NC     -     Not Connected       48     NC     -     Not Connected       50     OUT_LDO     Digital     0 V – LDO Ground. It can be shorted externally to DV       51     NC |            |
| 37   DVSS   Digital   0 V – Digital Ground     38   DRDY   Digital Output: Active<br>Low   Data Ready Signal     39   NC   Not Connected     40   ADDR[3]   Digital Input   4 <sup>th</sup> bit of Channel Address to select any of 16 ADC.     41   ADDR[2]   Digital Input   3 <sup>rd</sup> bit of Channel Address to select any of 16 ADC.     42   ADDR[1]   Digital Input   2 <sup>nd</sup> bit of Channel Address to select any of 16 ADC.     43   ADDR[0]   Digital Input   1 <sup>st</sup> bit of Channel Address to select any of 16 ADC.     44   MODE   Digital Input   1 <sup>st</sup> bit of Channel Address to select any of 16 ADC.     44   MODE   Digital Input   1 <sup>st</sup> bit of Channel Address to select any of 16 ADC.     44   MODE   Digital Input   1 <sup>st</sup> bit of Channel Address to select any of 16 ADC.     45   NC   -   Not Connected     46   DVSS   Digital   0 V – Digital Ground     47   NC   -   Not Connected     50   OUT_LDO   Digital   3.3V – LDO Supply. To be shorted externally to DV.     51   NC   -   Not Connected     54                                                     |            |
| 38     DRDY     Digital Output: Active<br>Low     Data Ready Signal       39     NC     Not Connected       40     ADDR[3]     Digital Input     4 <sup>th</sup> bit of Channel Address to select any of 16 ADC.       41     ADDR[2]     Digital Input     3 <sup>rd</sup> bit of Channel Address to select any of 16 ADC.       42     ADDR[1]     Digital Input     1 <sup>st</sup> bit of Channel Address to select any of 16 ADC.       43     ADDR[0]     Digital Input     1 <sup>st</sup> bit of Channel Address to select any of 16 ADC.       44     MODE     Digital Input     1 <sup>st</sup> bit of Channel Address to select any of 16 ADC.       45     NC     -     Not Connected       46     DVSS     Digital     0 V – Digital Ground       47     NC     -     Not Connected       48     NC     -     Not Connected       49     VSS_LDO     Digital     1.8V LDO Output for Digital Core Supply.       51     NC     -     Not Connected       52     VD_LDO     Digital     1.8V LDO Output for Digital Core Supply.       53     NC     -     Not Connected       54 </th <th></th>                                    |            |
| JRDY     Low     Not Connected       39     NC     ADDR[3]     Digital Input     4 <sup>th</sup> bit of Channel Address to select any of 16 ADC.       41     ADDR[1]     Digital Input     3'd bit of Channel Address to select any of 16 ADC.       42     ADDR[1]     Digital Input     3'd bit of Channel Address to select any of 16 ADC.       43     ADDR[0]     Digital Input     1st bit of Channel Address to select any of 16 ADC.       44     MODE     Digital Input     Mode Selection to select Program Mode or Flight N       45     NC     -     Not Connected       46     DVSS     Digital     0 V – Digital Ground       47     NC     -     Not Connected       48     NC     -     Not Connected       49     VSS_LDO     Digital     0 V – LDO Ground. It can be shorted externally to I       50     OUT_LDO     Digital     3.3V – LDO Supply. To be shorted externally to D       51     NC     -     Not Connected       54     CLK     Digital Input     ADC Master Clock       55     NC     -     Not Connected <tr< th=""><th></th></tr<>                                                                       |            |
| 40   ADDR[3]   Digital Input   4 <sup>th</sup> bit of Channel Address to select any of 16 ADC:     41   ADDR[2]   Digital Input   3 <sup>rd</sup> bit of Channel Address to select any of 16 ADC     42   ADDR[0]   Digital Input   1 <sup>rd</sup> bit of Channel Address to select any of 16 ADC     43   ADDR[0]   Digital Input   1 <sup>rd</sup> bit of Channel Address to select any of 16 ADC     44   MODE   Digital Input   Mode Selection to select Program Mode or Flight N     45   NC   -   Not Connected     46   DVSS   Digital   0 V – Digital Ground     47   NC   -   Not Connected     48   NC   -   Not Connected     48   NC   -   Not Connected     49   VSS_LDO   Digital   1.8V LDO Output for Digital Core Supply.     51   NC   -   Not Connected     52   VDD_LDO   Digital Input   ADC Master Clock     54   CLK   Digital Input   ADC Master Clock     55   NC   -   Not Connected     54   DVSS   Digital Input: Active Low   Chip Select     57                                                                                                                                                                 |            |
| 41   ADDR[2]   Digital Input   3rd bit of Channel Address to select any of 16 ADC.     42   ADDR[1]   Digital Input   1st bit of Channel Address to select any of 16 ADC     43   ADDR[0]   Digital Input   1st bit of Channel Address to select any of 16 ADC     44   MODE   Digital Input   Mode Selection to select Program Mode or Flight N     45   NC   -   Not Connected     46   DVSS   Digital   0 V - Digital Ground     47   NC   -   Not Connected     48   NC   -   Not Connected     49   VSS_LDO   Digital   0 V - LDO Ground. It can be shorted externally to I     50   OUT_LDO   Digital   1.8V LDO Output for Digital Core Supply.     51   NC   -   Not Connected     52   VDD_LDO   Digital Input   ADC Connected     54   CLK   Digital Input   ADC Connected     54   CLK   Digital Input   ADC Connected     56   NC   -   Not Connected     57   SS_N   Digital Input: Active Low   Chip Select     58 <td< th=""><th></th></td<>                                                                                                                                                                                    |            |
| 42   ADDR[1]   Digital Input   2 <sup>nd</sup> bit of Channel Address to select any of 16 ADC     43   ADDR[0]   Digital Input   1 <sup>st</sup> bit of Channel Address to select any of 16 ADC     44   MODE   Digital Input   Mode Selection to select Program Mode or Flight N     45   NC   -   Not Connected     46   DVSS   Digital   0 V - Digital Ground     47   NC   -   Not Connected     48   NC   -   Not Connected     49   VSS_LDO   Digital   0 V - LDO Ground. It can be shorted externally to I     50   OUT_LDO   Digital   1.8V LDO Output for Digital Core Supply.     51   NC   -   Not Connected     52   VDD_LDO   Digital   3.3V - LDO Supply. To be shorted externally to DV     53   NC   -   Not Connected     54   CLK   Digital Input   ADC Master Clock     55   NC   -   Not Connected     56   DVSS   Digital Input: Active Low   Chip Select     58   SCK   Digital Input   Serial Data Input     59   DIN                                                                                                                                                                                                   |            |
| 43   ADDR[0]   Digital Input   1st bit of Channel Address to select any of 16 ADC     44   MODE   Digital Input   Mode Selection to select Program Mode or Flight N     45   NC   -   Not Connected     46   DVSS   Digital   0 V – Digital Ground     47   NC   -   Not Connected     48   NC   -   Not Connected     49   VSS_LDO   Digital   0 V – LDO Ground. It can be shorted externally to I     50   OUT_LDO   Digital   1.8V LDO Output for Digital Core Supply.     51   NC   -   Not Connected     52   VDD_LDO   Digital   3.3V – LDO Supply. To be shorted externally to DV     53   NC   -   Not Connected     54   CLK   Digital Input   ADC Master Clock     55   NC   -   Not Connected     56   DVSS   Digital Input: Active Low   Chip Select     58   SCK   Digital Input   Serial Clock Input     59   DIN   Digital Output   Serial Data Input     60   NC   -   Not Connected <th></th>                                                                                                                                                                                                                                 |            |
| 44   MODE   Digital Input   Mode Selection to select Program Mode or Flight N     45   NC   -   Not Connected     46   DVSS   Digital   0 V - Digital Ground     47   NC   -   Not Connected     48   NC   -   Not Connected     48   NC   -   Not Connected     49   VSS_LDO   Digital   0 V - LDO Ground. It can be shorted externally to I     50   OUT_LDO   Digital   3.3V - LDO Supply. To be shorted externally to IV     51   NC   -   Not Connected     52   VDD_LDO   Digital Input   ADC Master Clock     53   NC   -   Not Connected     54   CLK   Digital Input   ADC Master Clock     55   NC   -   Not Connected     56   DVSS   Digital Input: Active Low   Chip Select     58   SCK   Digital Input   Serial Clock Input     59   DIN   Digital Input   Serial Data Input     60   NC   -   Not Connected     61   DOUT   Digi                                                                                                                                                                                                                                                                                               |            |
| 45   NC   -   Not Connected     46   DVSS   Digital   0 V - Digital Ground     47   NC   -   Not Connected     48   NC   -   Not Connected     49   VSS_LDO   Digital   0 V - LDO Ground. It can be shorted externally to I     50   OUT_LDO   Digital   1.8V LDO Output for Digital Core Supply.     51   NC   -   Not Connected     52   VDD_LDO   Digital   3.3V - LDO Supply. To be shorted externally to DV     53   NC   -   Not Connected     54   CLK   Digital Input   ADC Master Clock     55   NC   -   Not Connected     56   DVSS   Digital Input: Active Low   Chip Select     67   SS_N   Digital Input   Serial Clock Input     59   DIN   Digital Input   Serial Data Input     60   NC   -   Not Connected     61   DOUT   Digital Output   Serial Data Output     62   DVDD   Digital Input   Serial Data Output     63   DVSS                                                                                                                                                                                                                                                                                              |            |
| 46   DVSS   Digital   0 V – Digital Ground     47   NC   -   Not Connected     48   NC   -   Not Connected     49   VSS_LDO   Digital   0 V – LDO Ground. It can be shorted externally to I     50   OUT_LDO   Digital   1.8V LDO Output for Digital Core Supply.     51   NC   -   Not Connected     52   VDD_LDO   Digital   3.3V – LDO Supply. To be shorted externally to DV     53   NC   -   Not Connected     54   CLK   Digital Input   ADC Master Clock     55   NC   -   Not Connected     56   DVSS   Digital Input: Active Low   Chip Select     58   SCK   Digital Input   Serial Clock Input     59   DIN   Digital Output   Serial Data Input     60   NC   -   Not Connected     61   DOUT   Digital Output   Serial Data Output     62   DVDD   Digital Input   Serial Data Output     63   DVSS   Digital   0 V – Digital PAD Supply     63   <                                                                                                                                                                                                                                                                              | ode        |
| 47   NC   -   Not Connected     48   NC   -   Not Connected     49   VSS_LDO   Digital   0 V – LDO Ground. It can be shorted externally to I     50   OUT_LDO   Digital   1.8V LDO Output for Digital Core Supply.     51   NC   -   Not Connected     52   VDD_LDO   Digital   3.3V – LDO Supply. To be shorted externally to DV     53   NC   -   Not Connected     54   CLK   Digital Input   ADC Master Clock     55   NC   -   Not Connected     56   DVSS   Digital Input: Active Low   Chip Select     58   SCK   Digital Input   Serial Clock Input     59   DIN   Digital Input   Serial Data Input     60   NC   -   Not Connected     61   DOUT   Digital Output   Serial Data Output     62   DVDD   Digital   3.3 V – Digital PAD Supply     63   DVSS   Digital   0 V – Digital Ground     64   TEST_SE   Digital Input   Test Pin - Must to connected to DVSS                                                                                                                                                                                                                                                                   |            |
| 48   NC   -   Not Connected     49   VSS_LDO   Digital   0 V – LDO Ground. It can be shorted externally to I     50   OUT_LDO   Digital   1.8V LDO Output for Digital Core Supply.     51   NC   -   Not Connected     52   VDD_LDO   Digital   3.3V – LDO Supply. To be shorted externally to DV     53   NC   -   Not Connected     54   CLK   Digital Input   ADC Master Clock     55   NC   -   Not Connected     56   DVSS   Digital Input   ADC Master Clock     57   SS_N   Digital Input: Active Low   Chip Select     58   SCK   Digital Input   Serial Clock Input     59   DIN   Digital Input   Serial Data Input     60   NC   -   Not Connected     61   DOUT   Digital Output   Serial Data Output     62   DVDD   Digital Output   Serial Data Output     63   DVSS   Digital   0.3 V – Digital PAD Supply     63   DVSS   Digital Input   Test Pin - Must to connected to DVSS                                                                                                                                                                                                                                                |            |
| 49VSS_LDODigital0 V - LDO Ground. It can be shorted externally to I50OUT_LDODigital1.8V LDO Output for Digital Core Supply.51NC-Not Connected52VDD_LDODigital3.3V - LDO Supply. To be shorted externally to DV53NC-Not Connected54CLKDigital InputADC Master Clock55NC-Not Connected56DVSSDigital Input: Active<br>LowChip Select58SCKDigital InputSerial Clock Input59DINDigital InputSerial Data Input60NC-Not Connected61DOUTDigital OutputSerial Data Output62DVDDDigital3.3 V – Digital Ground63DVSSDigital0 V – Digital Ground64TEST_SEDigital Input: Active<br>LowReset Signal: Reset the entire Chip. Reset signal s<br>4 Master Clock of ADC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| 50   OUT_LDO   Digital   1.8V LDO Output for Digital Core Supply.     51   NC   -   Not Connected     52   VDD_LDO   Digital   3.3V – LDO Supply. To be shorted externally to DV     53   NC   -   Not Connected     54   CLK   Digital Input   ADC Master Clock     55   NC   -   Not Connected     56   DVSS   Digital Input: Active Low   Chip Select     58   SCK   Digital Input   Serial Clock Input     59   DIN   Digital Input   Serial Data Input     60   NC   -   Not Connected     61   DOUT   Digital Output   Serial Data Output     62   DVDD   Digital   3.3 V – Digital PAD Supply     63   DVSS   Digital   0 V – Digital Ground     64   TEST_SE   Digital Input: Active Low   Reset Signal: Reset the entire Chip. Reset signal s     65   RESET   Digital Input: Active Low   Reset Signal: Reset the entire Chip. Reset signal s                                                                                                                                                                                                                                                                                        |            |
| 51   NC   -   Not Connected     52   VDD_LDO   Digital   3.3V – LDO Supply. To be shorted externally to DV     53   NC   -   Not Connected     54   CLK   Digital Input   ADC Master Clock     55   NC   -   Not Connected     56   DVSS   Digital Input: Active<br>Low   O V – Digital Ground     57   SS_N   Digital Input: Active<br>Low   Chip Select     58   SCK   Digital Input   Serial Clock Input     59   DIN   Digital Input   Serial Data Input     60   NC   -   Not Connected     61   DOUT   Digital Output   Serial Data Output     62   DVDD   Digital   3.3 V – Digital PAD Supply     63   DVSS   Digital   0 V – Digital Ground     64   TEST_SE   Digital Input: Active<br>Low   Reset Signal: Reset the entire Chip. Reset signal s<br>4 Master Clock of ADC                                                                                                                                                                                                                                                                                                                                                            | VSS.       |
| 52VDD_LDODigital3.3V - LDO Supply. To be shorted externally to DV53NC-Not Connected54CLKDigital InputADC Master Clock55NC-Not Connected56DVSSDigital0 V - Digital Ground57SS_NDigital Input: Active<br>LowChip Select58SCKDigital InputSerial Clock Input59DINDigital InputSerial Data Input60NC-Not Connected61DOUTDigital OutputSerial Data Output62DVDDDigital3.3 V - Digital PAD Supply63DVSSDigital InputTest Pin - Must to connected to DVSS65RESETDigital Input: Active<br>LowReset Signal: Reset the entire Chip. Reset signal s<br>4 Master Clock of ADC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| 53NC-Not Connected54CLKDigital InputADC Master Clock55NC-Not Connected56DVSSDigital0 V – Digital Ground57SS_NDigital Input: Active<br>LowChip Select58SCKDigital InputSerial Clock Input59DINDigital InputSerial Data Input60NC-Not Connected61DOUTDigital OutputSerial Data Output62DVDDDigital3.3 V – Digital Ground64TEST_SEDigital InputTest Pin - Must to connected to DVSS65RESETDigital Input: Active<br>LowReset Signal: Reset the entire Chip. Reset signal s<br>4 Master Clock of ADC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 54   CLK   Digital Input   ADC Master Clock     55   NC   -   Not Connected     56   DVSS   Digital   0 V – Digital Ground     57   SS_N   Digital Input: Active<br>Low   Chip Select     58   SCK   Digital Input   Serial Clock Input     59   DIN   Digital Input   Serial Data Input     60   NC   -   Not Connected     61   DOUT   Digital Output   Serial Data Output     62   DVDD   Digital   3.3 V – Digital PAD Supply     63   DVSS   Digital Input   Test Pin - Must to connected to DVSS     64   TEST_SE   Digital Input: Active<br>Low   Reset Signal: Reset the entire Chip. Reset signal s<br>4 Master Clock of ADC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ַםכ.       |
| 55NC-Not Connected56DVSSDigital0 V – Digital Ground57SS_NDigital Input: Active<br>LowChip Select58SCKDigital InputSerial Clock Input59DINDigital InputSerial Data Input60NC-Not Connected61DOUTDigital OutputSerial Data Output62DVDDDigital3.3 V – Digital PAD Supply63DVSSDigital0 V – Digital Ground64TEST_SEDigital Input: Active<br>LowReset Signal: Reset the entire Chip. Reset signal s<br>4 Master Clock of ADC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| 56DVSSDigital0 V – Digital Ground57SS_NDigital Input: Active<br>LowChip Select58SCKDigital InputSerial Clock Input59DINDigital InputSerial Data Input60NC-Not Connected61DOUTDigital OutputSerial Data Output62DVDDDigital3.3 V – Digital PAD Supply63DVSSDigital0 V – Digital Ground64TEST_SEDigital Input: Active<br>LowReset Signal: Reset the entire Chip. Reset signal s<br>4 Master Clock of ADC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
| 57SS_NDigital Input: Active<br>LowChip Select58SCKDigital InputSerial Clock Input59DINDigital InputSerial Data Input60NC-Not Connected61DOUTDigital OutputSerial Data Output62DVDDDigital3.3 V – Digital PAD Supply63DVSSDigital0 V – Digital Ground64TEST_SEDigital Input: Active<br>LowReset Signal: Reset the entire Chip. Reset signal s<br>4 Master Clock of ADC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| SS_N   Low     58   SCK   Digital Input   Serial Clock Input     59   DIN   Digital Input   Serial Data Input     60   NC   -   Not Connected     61   DOUT   Digital Output   Serial Data Output     62   DVDD   Digital   3.3 V – Digital PAD Supply     63   DVSS   Digital   0 V – Digital Ground     64   TEST_SE   Digital Input   Test Pin - Must to connected to DVSS     65   RESET   Digital Input: Active Low   Reset Signal: Reset the entire Chip. Reset signal s 4 Master Clock of ADC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| 59DINDigital InputSerial Data Input60NC-Not Connected61DOUTDigital OutputSerial Data Output62DVDDDigital3.3 V – Digital PAD Supply63DVSSDigital0 V – Digital Ground64TEST_SEDigital InputTest Pin - Must to connected to DVSS65RESETDigital Input: Active LowReset Signal: Reset the entire Chip. Reset signal s<br>4 Master Clock of ADC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| 60   NC   -   Not Connected     61   DOUT   Digital Output   Serial Data Output     62   DVDD   Digital   3.3 V – Digital PAD Supply     63   DVSS   Digital   0 V – Digital Ground     64   TEST_SE   Digital Input   Test Pin – Must to connected to DVSS     65   RESET   Digital Input: Active Low   Reset Signal: Reset the entire Chip. Reset signal s 4 Master Clock of ADC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
| 61   DOUT   Digital Output   Serial Data Output     62   DVDD   Digital   3.3 V – Digital PAD Supply     63   DVSS   Digital   0 V – Digital Ground     64   TEST_SE   Digital Input   Test Pin - Must to connected to DVSS     65   RESET   Digital Input: Active Low   Reset Signal: Reset the entire Chip. Reset signal s 4 Master Clock of ADC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
| 62   DVDD   Digital   3.3 V – Digital PAD Supply     63   DVSS   Digital   0 V – Digital Ground     64   TEST_SE   Digital Input   Test Pin - Must to connected to DVSS     65   RESET   Digital Input: Active Low   Reset Signal: Reset the entire Chip. Reset signal s 4 Master Clock of ADC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| 63   DVSS   Digital   0 V – Digital Ground     64   TEST_SE   Digital Input   Test Pin - Must to connected to DVSS     65   RESET   Digital Input: Active Low   Reset Signal: Reset the entire Chip. Reset signal s 4 Master Clock of ADC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| 64     TEST_SE     Digital Input     Test Pin - Must to connected to DVSS       65     RESET     Digital Input: Active<br>Low     Reset Signal: Reset the entire Chip. Reset signal s<br>4 Master Clock of ADC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| 65     Digital Input: Active Low     Reset Signal: Reset the entire Chip. Reset signal s       4 Master Clock of ADC     4 Master Clock of ADC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| Low 4 Master Clock of ADC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ould be of |
| 66 NC - Not Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| 67 NC - Not Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| 68 MVDD Analog 3.3 V – Mixed Signal Supply. It can be shorted to A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DD.        |
| 69 NC - Not Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| 70 MVSS Analog 0 V – Mixed Signal Ground. It can be shorted to AV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SS.        |
| 71 AVSS Analog 0 V – Analog Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
| 72 AVDD Analog 3.3 V – Analog Supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| 73 INN15 Analog Input / Output ADC 15 Negative Input / Current DAC 15 2 <sup>nd</sup> Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| 74 INP15 Analog Input / Output ADC 15 Positive Input / Current DAC 15 1 <sup>st</sup> Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| 75 AVSS Analog 0 V – Analog Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |

| 76       | AVDD     | Analog                     | 3.3 V – Analog Supply                                                                                                    |
|----------|----------|----------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 77       | INN14    | Analog Input / Output      | ADC 14 Negative Input / Current DAC 14 2 <sup>nd</sup> Output <sup>(Note-1)</sup>                                        |
| 78       | NC       |                            | Not Connected                                                                                                            |
| 79       | INP14    | -<br>Analog Input / Output | ADC 14 Positive Input / Current DAC 14 1 <sup>st</sup> Output <sup>(Note-1)</sup>                                        |
| 80       | NC       |                            | Not Connected                                                                                                            |
| 81       | AVDD     | Analog                     | 3.3 V – Analog Supply                                                                                                    |
| 82       | INN13    | Analog Input / Output      | ADC 13 Negative Input / Current DAC 13 2 <sup>nd</sup> Output <sup>(Note-1)</sup>                                        |
| 83       | INP13    | Analog Input / Output      | ADC 13 Positive Input / Current DAC 13 2 Output (Note-1)                                                                 |
|          | NC       |                            | Not Connected                                                                                                            |
| 84<br>85 |          | -                          |                                                                                                                          |
|          | AVSS     | Analog                     | 0 V – Analog Ground                                                                                                      |
| 86       | AVDD     | Analog                     | 3.3 V – Analog Supply                                                                                                    |
| 87       | INN12    | Analog Input / Output      | ADC 12 Negative Input / Current DAC 12 2 <sup>nd</sup> Output <sup>(Note-1)</sup>                                        |
| 88       | NC       | -                          | Not Connected                                                                                                            |
| 89       | INP12    | Analog Input / Output      | ADC 12 Positive Input / Current DAC 12 1 <sup>st</sup> Output <sup>(Note-1)</sup>                                        |
| 90       | AVSS     | Analog                     | 0 V – Analog Ground                                                                                                      |
| 91       | NC       | -                          | Not Connected                                                                                                            |
| 92       | AVDD     | Analog                     | 3.3 V – Analog Supply                                                                                                    |
| 93       | INN11    | Analog Input / Output      | ADC 11 Negative Input / Current DAC 11 2 <sup>nd</sup> Output <sup>(Note-1)</sup>                                        |
| 94       | INP11    | Analog Input / Output      | ADC 11 Positive Input / Current DAC 11 1st Output <sup>(Note-1)</sup>                                                    |
| 95       | AVSS     | Analog                     | 0 V – Analog Ground                                                                                                      |
| 96       | AVDD     | Analog                     | 3.3 V – Analog Supply                                                                                                    |
| 97       | INN10    | Analog Input / Output      | ADC 10 Negative Input / Current DAC 10 2 <sup>nd</sup> Output                                                            |
| 98       | INP10    | Analog Input / Output      | ADC 10 Positive Input / Current DAC 10 1st Output                                                                        |
| 99       | NC       | -                          | Not Connected                                                                                                            |
| 100      | NC       | -                          | Not Connected                                                                                                            |
| 101      | NC       | -                          | Not Connected                                                                                                            |
| 102      | INN9     | Analog Input / Output      | ADC 9 Negative Input / Current DAC 9 2 <sup>nd</sup> Output <sup>(Note-1)</sup>                                          |
| 103      | INP9     | Analog Input / Output      | ADC 9 Positive Input / Current DAC 9 1st Output <sup>(Note-1)</sup>                                                      |
| 104      | AVSS     | Analog                     | 0 V – Analog Ground                                                                                                      |
| 105      | AVDD     | Analog                     | 3.3 V – Analog Supply                                                                                                    |
| 106      | INN8     | Analog Input / Output      | ADC 8 Negative Input / Current DAC 8 2 <sup>nd</sup> Output <sup>(Note-1)</sup>                                          |
| 107      | INP8     | Analog Input / Output      | ADC 8 Positive Input / Current DAC 8 1 <sup>st</sup> Output <sup>(Note-1)</sup>                                          |
| 108      | AVSS     | Analog                     | 0 V – Analog Ground                                                                                                      |
| 109      | AVDD     | Analog                     | 3.3 V – Analog Supply                                                                                                    |
| 110      | REFP HI  | Analog Input               | High Positive Reference Input Pin for ADC                                                                                |
| 111      | NC _     | -                          | Not Connected                                                                                                            |
| 112      | NC       | -                          | Not Connected                                                                                                            |
| 113      | REFN HI  | Analog Input               | High Negative Reference Input Pin for ADC                                                                                |
| 114      | REFN LO  | Analog Input               | Low Negative Reference Input Pin for ADC                                                                                 |
| 115      | REFP LO  | Analog Input               | Low Positive Reference Input Pin for ADC                                                                                 |
| 116      | REF_OUT  | Analog Output              | Reference Output (1.22V). User has to connect a decoupling capacitor of $0.1\mu$ F and $1\mu$ F w.r.t. AVSS at this pin. |
| 117      | NC       | -                          | Not Connected                                                                                                            |
| 118      | AVDD     | Analog                     | 3.3 V – Analog Supply                                                                                                    |
| 119      | REF IDAC | Analog Input               | Reference Input for Current DAC (Max Voltage: 1.25V)                                                                     |
| 120      |          | Analog Output              | Common Mode Output (VDD/2). User has to connect a                                                                        |
|          | VCM      |                            | decoupling capacitor of 0.1 $\mu$ F and 1 $\mu$ F w.r.t. AVSS at this pin)                                               |
| 121      | NC       | -                          | Not Connected                                                                                                            |
| 122      | RDAC     | Analog                     | Current DAC Resistor                                                                                                     |
| 123      | AVDD     | Analog                     | 3.3 V – Analog Supply                                                                                                    |
| 124      | AVSS     | Analog                     | 0 V – Analog Ground                                                                                                      |
| 125      | INP7     | Analog Input / Output      | ADC 7 Positive Input / Current DAC 7 1 <sup>st</sup> Output <sup>(Note-1)</sup>                                          |
| 126      | INN7     | Analog Input / Output      | ADC 7 Negative Input / Current DAC 7 2 <sup>nd</sup> Output <sup>(Note-1)</sup>                                          |

| 127 | AVDD | Analog                | 3.3 V – Analog Supply                                                           |
|-----|------|-----------------------|---------------------------------------------------------------------------------|
| 128 | AVSS | Analog                | 0 V – Analog Ground                                                             |
| 129 | INP6 | Analog Input / Output | ADC 6 Positive Input / Current DAC 6 1 <sup>st</sup> Output <sup>(Note-1)</sup> |
| 130 | INN6 | Analog Input / Output | ADC 6 Negative Input / Current DAC 6 2 <sup>nd</sup> Output <sup>(Note-1)</sup> |
| 131 | NC   | -                     | Not Connected                                                                   |
| 132 | NC   | -                     | Not Connected                                                                   |

Note1: When a user want to use only ADC input pin, the current of the corresponding current DAC should be set to zero.

### **SPI TIMING SPECIFICATIONS DURING PROGRAM MODE:**

User has to refer to the following timing diagram during the reading/writing of registers in Program Mode.

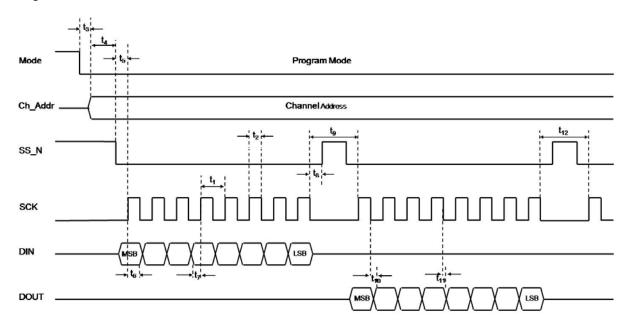



Fig. 1 Timing Specifications During Program Mode

### TIMING SPECIFICATION TABLE

| SPEC            | DESCRIPTION                                                                                                                     | MIN            | MAX             | UNIT                    |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|-------------------------|
| t <sub>1</sub>  | SCK period                                                                                                                      | 4 cycle        |                 | t <sub>CLK</sub> Period |
| t <sub>2</sub>  | SCK pulse width (High and Low)                                                                                                  | 2 cycle        |                 | t <sub>CLK</sub> Period |
| t <sub>3</sub>  | Mode change to channel change                                                                                                   | 1 cycle        |                 | t <sub>CLK</sub> Period |
| t4              | Channel Change to SS_N low                                                                                                      | 4 cycle        |                 | t <sub>CLK</sub> Period |
| t <sub>5</sub>  | SS_N low to first SCK edge                                                                                                      | 1 cycle        |                 | t <sub>CLK</sub> Period |
| t <sub>6</sub>  | SCK rising edge to DIN valid (Hold time)                                                                                        | 50             |                 | ns                      |
| t7              | DIN valid to SCK rising edge (Setup time)                                                                                       | 50             |                 | ns                      |
| t <sub>8</sub>  | Last SCK falling edge to SS_N HIGH                                                                                              | 100            |                 | ns                      |
| t <sub>9</sub>  | Delay between last SCL edge of 1st byte transfer<br>and first SCK edge for subsequent 2nd byte<br>transfer : RREG, WREG Command | 10             |                 | t <sub>CLK</sub> Period |
| <b>t</b> 10     | SCK falling Edge to valid new DOUT                                                                                              |                | 50 <sup>2</sup> | ns                      |
| t11             | SCK falling Edge to DOUT, Hold Time                                                                                             | 0 <sup>3</sup> |                 | ns                      |
| t <sub>12</sub> | Final SCK edge of one command until first edge SCK of next command                                                              | 4              |                 | tclk Period             |

 $t_{\text{CLK}:}$  Time period of ADC master clock

Notes: (1) DOUT goes immediately into tri-state whenever SS\_N is high, (2) DOUT pin output load should be less than 20pF

(3) DOUT should be sampled externally on rising edge of SCK. DOUT will remain valid till next falling edge.

### FLIGHT MODE TIMING SPECIFICATIONS:

User has to refer the following timing diagram during the flight mode.

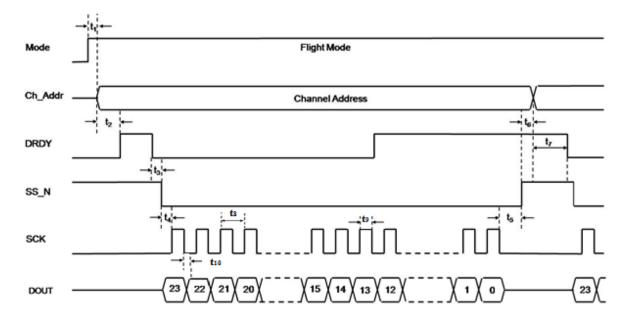



Fig. 2 Timing Specifications During Flight Mode.

#### TIMING SPECIFICATION TABLE

| SPEC           | DESCRIPTION                              | MIN     | MAX             | UNIT                    |
|----------------|------------------------------------------|---------|-----------------|-------------------------|
| t1             | Mode change to channel change            | 1       |                 | t <sub>clk</sub> period |
| t <sub>2</sub> | Channel Change to DRDY High (Note:1)     | 4       |                 | t <sub>clk</sub> period |
| t <sub>3</sub> | DRDY Low to SS_N low (Note:2)            |         | 1               | t <sub>clk</sub> period |
| t4             | SS_N low to 1 <sup>st</sup> edge of SCK. | 1       |                 | t <sub>clk</sub> period |
| t5             | SCK low to SS_N High                     | 5       |                 | t <sub>clk</sub> period |
| t <sub>6</sub> | SS_N High to channel change              | 1       |                 | t <sub>clk</sub> period |
| t7             | Channel change to DRDY Low               | 20      | 40              | t <sub>clk</sub> period |
| t <sub>8</sub> | SCK period                               | 4 cycle |                 | t <sub>CLK</sub> Period |
| t9             | SCK pulse width (High and Low)           | 2 cycle |                 | tclk Period             |
| <b>t</b> 10    | SCK falling Edge to valid new DOUT       |         | 50 <sup>3</sup> | ns                      |

 $t_{\text{CLK}:}$  Time period of ADC master clock

Notes: (1) In case the DRDY of the previous channel is turns low before changing the channel.

(2) Once DRDY goes low, user has to make SS\_N low within one master clock.
(3) DOUT pin output load should be less than 20pF

### **ELECTRICAL CHARACTERISTICS**

All specifications are at AVDD, DVDD, MVDD = +3.3V, VDD\_LDO=3.3V, Temp. = 25°C, OSR=2047,  $f_{MOD}$ = 156.250 KHz,  $f_{CLK}$  =5MHz,  $f_{Data}$  = 76.294 Hz, PGA=1, REFP\_HI =2.5V, REFN\_HI =0V, R<sub>DAC</sub>=75K unless otherwise specified.

|                                                                                                               |                                                                                                                  | SC1237-0                         |                                       |                                             |                           |  |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------|---------------------------------------------|---------------------------|--|
| PARAMETER                                                                                                     | TESTS CONDITIONS                                                                                                 | MIN                              | TYP                                   | MAX                                         | UNITS                     |  |
| ADC<br>Analog Input Range<br>Full Scale Input Range<br>Programmable Gain Amplifier<br>Input Current (Dynamic) | V <sub>INP</sub> -V <sub>INN</sub><br>User Selectable                                                            | 0<br>-V <sub>REF</sub> /PGA<br>1 |                                       | AVDD<br>+V <sub>REF</sub> /PGA<br>128<br>25 | V<br>V<br>µА              |  |
| Input Capacitance<br>Bandwidth<br>Sinc <sup>3</sup> Filter**                                                  | -3dB                                                                                                             |                                  | 32<br>0.262* <i>f</i> <sub>Data</sub> |                                             | pF<br>Hz                  |  |
| Input Impedance                                                                                               | $f_{MOD}$ = 78.125Kz                                                                                             |                                  | 100                                   |                                             | KΩ                        |  |
| Resolution<br>No Missing Code*<br>Integral Non-Linearity                                                      | OSR=256, <i>f</i> <sub>CLK</sub> =5MHz, <i>f</i> <sub>MOD</sub> = <i>f</i> <sub>CLK</sub> /64<br>Best Fit Method | 24<br>14                         |                                       | ±0.005                                      | Bits<br>Bits<br>% of FS   |  |
| Offset Error<br>Offset Drift                                                                                  | After Calibration<br>-55°C to +125°C                                                                             |                                  |                                       | 20<br>10                                    | ppm of FS<br>ppm of FS/°C |  |
| Gain Error<br>Gain Drift                                                                                      | After Calibration<br>-55°C to +125°C                                                                             |                                  |                                       | 0.002<br>4                                  | % of FS<br>ppm/°C         |  |
| Effective Number of Bits (ENOB)                                                                               | Based on 100 samples                                                                                             |                                  |                                       | 19                                          | Bits                      |  |
| Input Common-Mode Rejection<br>Reference Common-Mode Rejection                                                | At DC<br>At DC                                                                                                   | 95                               | 83                                    |                                             | dB<br>dB                  |  |
| Power Supply Rejection                                                                                        | DC, dB = $-20 \log(\Delta VOUT / \Delta VDD)$                                                                    |                                  | 70                                    |                                             | dB                        |  |
| Master Clock Rate                                                                                             | f <sub>CLK</sub>                                                                                                 |                                  |                                       | 20                                          | MHz                       |  |
| ON CHIP VOLTAGE REFERENCE<br>Output Voltage<br>Load Regulation<br>Drift                                       | Load Current = 1µA<br>Full Load =2.5mA                                                                           | 1.20                             | 1.22                                  | 1.26<br>1<br>80                             | V<br>%                    |  |
| Start up Time**<br>Output Impedance**                                                                         | -55°C to +125°C                                                                                                  |                                  | 2.3                                   | 240                                         | ppm/ºC<br>μS<br>Ω         |  |
| VOLTAGE REFERENCE INPUT<br>External High Reference<br>External Low Reference                                  | (REFP_HI)-(REFN_HI)<br>Bias Current<br>(REFP_LO)-(REFN_LO)                                                       |                                  | 4                                     | 2.5<br>2.5                                  | V<br>µA<br>V              |  |
| POWER SUPPLY REQUIREMENT<br>Supply Voltage                                                                    | Bias Current                                                                                                     | 3.0                              | <u>4</u><br>3.3                       | 3.6                                         | μA<br>V                   |  |
| Analog Current<br>Digital Current<br>Digital Current                                                          | DVDD<br>VDD_LDO<br>Iavdd<br>Idvdd<br>ILdo static                                                                 | 3.0<br>3.0                       | 3.3<br>3.3<br>25<br>0.5<br>6.0        | 3.6<br>3.6<br>30<br>1<br>7.5                | V<br>V<br>mA<br>mA<br>mA  |  |
| Digital Current<br>ON CHIP LDO<br>Supply Voltage<br>Output Voltage<br>No Load Current                         | ILDO DYNAMIC@ FCLK=10MHZ<br>VDD_LDO<br>OUT_LDO                                                                   | 3.0<br>1.71                      | 9.0<br>3.3<br>1.80<br>6.0             | 10<br>3.6<br>1.89<br>7.5                    | MA<br>V<br>V<br>mA        |  |
| Line Regulation<br>Load Regulation<br>Temp Drift                                                              | @Full Load Current = 5mA (External)<br>-55°C to +125°C                                                           |                                  | 0.0                                   | 1<br>1<br>±2.0                              | %<br>%<br>%               |  |
| IDAC<br>Full Scale Output Current                                                                             | R <sub>DAC</sub> =75K, Range1<br>R <sub>DAC</sub> =75K, Range2<br>R <sub>DAC</sub> =75K, Range3                  |                                  | 0.5<br>1.0<br>2.0                     |                                             | mA<br>mA<br>mA            |  |
| Monotonocity                                                                                                  |                                                                                                                  | 8                                |                                       |                                             | Bits                      |  |

| Compliance Voltage<br>Nonlinearity<br>Absolute Error<br>Absolute Error Drift<br>Mismatch Error<br>Mismatch Error Drift | At Same Range and Code<br>-55⁰C to +125⁰C<br>At Same Range and Code<br>-55⁰C to +125⁰C |     |     | 2.6<br>1<br>10<br>500<br>2<br>400 | V<br>%FSR<br>%<br>ppm/°C<br>% FSR<br>ppm/°C |
|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----|-----|-----------------------------------|---------------------------------------------|
| TEMPERATURE RANGE<br>Operating                                                                                         |                                                                                        | -55 |     | 125                               | ٥C                                          |
| POWER DISSIPATION                                                                                                      | @ All IDAC off                                                                         |     | 115 |                                   | mW                                          |

\* No missing codes are verified and tested upto 14bits. Device may perform for better results. \*\*Simulated Result

#### **DIGITAL CHARACTERISTICS** DVDD= 3.0V to 3.6V

| PARAMETER                      |                                              | SC1237-0 |      |      | UNITS |
|--------------------------------|----------------------------------------------|----------|------|------|-------|
| PARAMETER                      | TESTS CONDITIONS                             | MIN      | TYP  | MAX  |       |
| Logic Family                   |                                              |          | CMOS |      |       |
| Logic Level: VIH               |                                              | 2        |      | DVDD | V     |
| V <sub>IL</sub>                |                                              | DVSS     |      | 0.8  | V     |
| V <sub>OH</sub>                | I <sub>OH</sub> =8mA<br>I <sub>OL</sub> =8mA | 3.0      |      |      | V     |
| V <sub>OL</sub>                | I <sub>OL</sub> =8mA                         | DVSS     |      | 0.4  | V     |
| Input Leakage: I <sub>IH</sub> | V <sub>I</sub> =DVDD                         |          |      | 1    | μA    |
| I <sub>IL</sub>                | V <sub>I</sub> =DVSS                         | -1       |      |      | μA    |

### **ABSOLUTE MAXIMUM RATING**

| PARAMETER                      | SC12 | UNITS    |       |
|--------------------------------|------|----------|-------|
| FARAIVIETER                    | MIN  | MAX      | UNITS |
| AVDD to AVSS                   | -0.3 | 4.3      | V     |
| DVDD to DVSS                   | -0.3 | 4.3      | V     |
| INP, INN                       | -0.3 | AVDD+0.3 | V     |
| Digital Input Voltage to DGND  | -0.3 | DVDD+0.3 | V     |
| Digital Output Voltage to DVSS | -0.3 | DVDD+0.3 | V     |
| Digital Output Current         |      | 8        | mA    |
| Maximum Junction Temperature   |      | 125      | °C    |

### **OVERVIEW**

### PROGRAMMABLE GAIN AMPLIFIER

The Programmable Gain Amplifier (PGA) can be set to gains of 1, 2, 4, 8, 16, 32, 64, or 128. Adjusting the internal gain of a  $\Sigma\Delta$  modulator is a technique, which can be used to get an appropriate LSB size for the transducers application. It will improve the resolution of the ADC.

### $\Sigma\Delta$ MODULATOR

A second order  $\sum \Delta$  modulator is used in the  $\sum \Delta$  ADC. The  $\sum \Delta$  modulator converts the input signal into a digital pulse train whose average duty cycle represents the digitized signal information. The integrators used in the modulator are switched capacitor based.

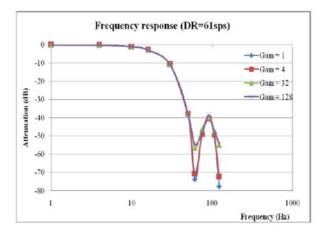
There are sixteen different  $\sum \Delta$ Modulator units in Multi-Core RDAS. Each of modulator units can be programmed independently.

The modulator runs at clock frequency  $f_{MOD}$  that can be adjusted by setting the appropriate value of PRE1: PRE0 of CR2 control register as shown in the following table:

| PRE1:PRE0 | <b>f</b> mod          |
|-----------|-----------------------|
| 00        | fclк /32              |
| 01        | f <sub>CLK</sub> /64  |
| 10        | <i>f</i> ськ /128     |
| 11        | f <sub>CLK</sub> /256 |

where  $f_{CLK}$  is master clock frequency of ADC. The input signal is also sampled at  $f_{MOD}$ .

The modulator is designed to work at a maximum modulator frequency of 625 *KHz.* All sixteen modulator units run at the same modulator frequency. It is recommended that user must set the same PRE1:PRE0 value in all the modulator cores. If different values of PRE1:PRE0 are used then, the last core PRE1:PRE0 values will be used for all the modulator cores.


The input stage of  $\sum \Delta$  modulator is a switched capacitor stage which samples the input signal at  $f_{MOD}$  on a sampling capacitor  $C_S$  of 32 *pf*. The value of the sampling capacitor is fixed for all the PGA values. The input impedance of the modulator stage can be calculated as:

Input Impedance = 
$$\frac{1}{4f_{MOD}C_S}$$

For e.g. if  $f_{MOD}$  = 78.125 KHz, then input impedance is given as 100K $\Omega$ .

### INTEGRATED FILTER MODULE

Each of  $\sum \Delta$  Modulator is followed by an independent integrated digital filter unit. It comprises of *sinc*<sup>3</sup> digital filter and internal registers. The Decimation Ratio (DR) of each unit of filter module can be programmed independently.



The on-chip digital filter processes the single bit data stream coming from the corresponding modulator unit using a *sinc*<sup>3</sup> filter. The *sinc* filters are conceptually simple, efficient and flexible, especially where variable data rates are required. The output Data Rate of digital filter is given as:

Data Rate =  $f_{MOD} / DR$ 

The Decimation Ratio (DR) of the filter is same as Oversampling Ratio (OSR). Since there is a droop in the output characteristic of the filter, the 3dB cut off frequency of the filter is  $0.262 \times DR$ . For example, if  $f_{MOD}$  is 125 KHz and DR is 512, then the Data Rate comes out to be 244Hz and maximum input frequency will be  $0.262 \times 244$  i.e. 64Hz.

The DR of filter can vary from 20 to 2047 and its value is represented by 8 Bits of DECIM Register and first 3 LSBs of CR2 Register. Although, DR can have any of the value between 20 and 2047 but there are fixed numbers of decimation ratios which are implemented internally. A range of the decimation ratio belongs to a particular decimation fixed internal ratio. Depending on the selected decimation ratio from a particular range, filter will provide a gain. The gain of the filter will be:

$$Filter \ Gain = \left(\frac{DR}{Internal \ DR}\right)^3$$

A table is given below shows the Filter Gain on a various decimation ratio:

| S.<br>No. | Internal<br>DR | DR Range |      | Filter | Gain |
|-----------|----------------|----------|------|--------|------|
|           |                | MAX      | MIN  | MAX    | MIN  |
| 1         | 2048           | 2047     | 1836 | 0.99   | 0.72 |
| 2         | 1626           | 1835     | 1458 | 1.44   | 0.72 |
| 3         | 1260           | 1457     | 1157 | 1.44   | 0.72 |
| 4         | 1024           | 1156     | 919  | 1.44   | 0.72 |
| 5         | 813            | 918      | 729  | 1.44   | 0.72 |
| 7         | 645            | 728      | 579  | 1.44   | 0.72 |

| 8  | 512 | 578 | 459 | 1.44 | 0.72 |
|----|-----|-----|-----|------|------|
| 9  | 406 | 458 | 365 | 1.43 | 0.72 |
| 10 | 323 | 364 | 290 | 1.43 | 0.72 |
| 11 | 256 | 289 | 230 | 1.44 | 0.72 |
| 12 | 203 | 229 | 182 | 1.43 | 0.72 |
| 13 | 161 | 181 | 145 | 1.41 | 0.73 |
| 14 | 128 | 144 | 115 | 1.42 | 0.72 |
| 15 | 102 | 114 | 92  | 1.41 | 0.74 |
| 16 | 81  | 91  | 73  | 1.44 | 0.74 |
| 17 | 64  | 72  | 58  | 1.42 | 0.74 |
| 18 | 51  | 57  | 46  | 1.41 | 0.74 |
| 19 | 40  | 45  | 36  | 1.39 | 0.71 |
| 20 | 32  | 35  | 29  | 1.31 | 0.74 |
| 21 | 25  | 28  | 23  | 1.34 | 0.74 |
| 22 | 20  | 20  | 22  | 1.3  | 1    |

Depending on the value on DR, user can calculate Filter Gain. The output code of the filter data will be scaled by the corresponding Filter Gain. For e.g., If DR = 1350, the Corresponding Internal DR of the filter is 1260 (S. No. 3), then the filter gain is given as:

Filter Gain = 
$$\left(\frac{1350}{1260}\right)^3 = 1.23$$

The filter gain can be corrected using Gain Calibration.

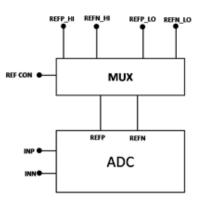
Each ADC core has its own registers bank which comprise of CR1, CR2, DECIM, IDAC1, IDAC2, OCR and FSR registers. The user can read/write these registers during Program Mode Any of the ADC core can be selected by applying appropriate channel address ADDR[3:0]. at the The decimal equivalent of ADDR[3:0] is the selected ADC core. The details of the various registers are given in CONTROL/STATUS Registers Section.

### IDAC

There are sixteen pairs of 8 Bit IDAC associated with 16 cores of ADCs. The output of each IDAC pair is shorted with positive and negative inputs of corresponding ADC core. Each pair of IDAC can be programmed independently. The output current of a particular IDAC pair is set with RDAC, the range select bits in CR1 register and 8 Bit digital value in IDAC registers. The output current of IDAC is given as:

 $IDAC \ Current = \frac{V_{REF\_IDAC}}{8*R_{DAC}} \ (K)(2^{RANGE-1})(IDAC \ CODE)$ 

RDAC resistor is an external resister to be connected at the RDAC pin. It is common to all IDACs. Range is the decimal equivalent of Range Select bits in CR1 register. IDAC CODE is the decimal equivalent of 8 bits binary value in IDAC register and K is 0.909. In case any IDAC is not being used, set the value of range as 00. It is to be noted that V<sub>REF\_IDAC</sub> can have a maximum value of 1.25V.


### VOLTAGE REGULATOR

The device has an on chip 1.8V linear voltage regulator. The input voltage range is 3.0V to 3.6V This Voltage Regulator is provided to supply 1.8V to the digital core. The settling time of the voltage regulator is 240  $\mu$ S. All the digital inputs must be applied after the settling of the regulator supply.

### **VOLTAGE REFERENCES INPUT**

The device has two options of the differential references: REFP\_HI– REFN\_HI and REFP\_LO–REFN\_LO. For a particular ADC core any of the reference can be selected independently using the REFCON bit of CR1 control register.

| <b>REFCON Bit</b> | Selected Reference |
|-------------------|--------------------|
| 0                 | REP_LO_REFN_LO     |
| 1                 | REP_HI–REFN_HI     |



For e.g. if REFCON bit for ADC core0 is set as 1 and REFCON bit for ADC core1 is set as 0, then REFP\_HI– REFN\_HI pair will be selected for core0 and REFP\_LO-REFN\_LO pair will be selected for core1.

Both the differential reference pairs (REFP\_HI–REFN\_HI and REFP\_LO– REFN\_LO) are identical. User can apply a maximum value of 2.5V between REFP and REFN of any of differential reference pair.

### ON CHIP BANDGAP REFERENCE

The device has an on chip Bandgap reference of 1.22V. To use it, the user needs to connect it externally with the REFP pin of any of the differential (REFP HIinput pair reference REFN HI or REFP LO-REFN LO) and the REFN pin of the corresponding pair must be connected to the Analog reference Ground. This Bandgap voltage can also be used as reference voltage of IDAC i.e. REF IDAC can be shorted to REF OUT.

### SERIAL INTERFACE

The serial interface is standard four wires SPI compatible (DIN, DOUT, SCK and SS\_N). All 16 ADC cores can

communicate serially through single SPI. The user has to select a particular ADC core for data transaction by placing an address on four bits address line CH\_ADDR [3:0]. SPI serial interface signals are described below:

**SS\_N (Serial Interface Enable):** The SS\_N input must be externally asserted before a master device exchanges the data with the ADC. SS\_N must be low for the duration of the transaction. DOUT pin will become tri- state when SS\_N goes high. When SS\_N is low, the output data register, from which the 24 bit output data is being transferred, will never be updated even if new data comes. After data read operation, it should be made high.

**SCK (serial clock):** SCK function as a clock for serial communication. The device will sample serial data on positive edge of SCK. Data from device will be launched on the negative edge of SCK.

**DIN (Data input):** DIN is the serial data input port. DIN is internally sampled at positive edge of SCK by SPI. The data to be transferred must be ready on the first positive edge of SCK.

**DOUT (Data Output):** DOUT is the serial data output port. DOUT is internally launched by SPI at negative edge of SCK by SPI. DOUT immediately goes into tri-state when SS\_N is high.

### DRDY (DATA READY)

The DRDY pin is used as a status signal to indicate when the new digital code of the selected ADC core is ready.

DRDY goes low when new data of the selected ADC core is available. During flight mode, DRDY also goes low after some time of channel selection. Whenever user selects a channel, DRDY goes low as soon as output data of the selected channel gets ready to be read. It becomes high in the mid of second byte read during read operation in flight mode. After selecting a particular core during flight mode, it is mandatory for the user to read the data of the selected core. It is also mandatory for the user to read at least two bytes, otherwise the DRDY will remains low till next filter clock or channel change.

DRDY shows the readiness of the data to be read. User should never read the data when DRDY is high. The reading of the data during the flight mode starts by making SS\_N low. Once SS\_N signal is low, the data of the data register is blocked and it will not be updated even if the new data is available. But user has to make sure that never pull down the SS\_N when DRDY is high.

### CONTROL LOGIC

Any ADC can be selected by applying appropriate four bits channel address CH ADDR [3:0]. The decimal equivalent of the Channel Address is the number of core which will be selected. For e.g. to select the 8<sup>th</sup> core, user has to apply 1000 as channel address. All the operations like instruction decodina. command SPI execution, control. DRDY calibration generation. etc. are governed by this unit.

Multi-core RDAS have two modes of operation: Program Mode and Flight Mode. The chip can be made to operate in any mode based on the logic high/low of Mode Pin. Logic Low at the Mode pin will set Program Mode while Logic High at Mode pin will set Flight Mode.

**Program Mode:** During this mode (Mode Pin at Logic Low) user can program the control registers for different settings like decimation ratio, PGA, pre-scaler, IDAC currents etc. Calibration should also be carried out during this mode only. It is also possible to read the data of all the registers including Data Registers using read data command in Program mode. All the commands will be recognized only in Program Mode. Kindly refer to Fig. 1 for the timing diagram during Program Mode.

The steps to be followed during Program Mode are given below:

- 1. Set the mode of device in Program mode by applying 0 at the mode pin.
- 2. Set the address lines corresponding to a particular ADC core.
- 3. Enable the SS\_N signal.
- 4. Set the control registers and perform the calibration (if needed).
- 5. Follow steps 2 and 4 for all the ADC cores.

When user is reading the 24 bits output data during the Program Mode, it is mandatory to keep SS\_N low for the complete reading cycle i.e. during the reading of all the three bytes. Once SS\_N is low, the data of the data register will not be updated even if new data is available. Also user has to make sure that SS\_N should go low at the time when DRDY is low. Otherwise wrong data will be transferred. Flight Mode: During this mode (Mode Pin at Logic High), data from selected ADC core goes out from the device. Refer to timing diagram given in Fig. 2 for the data reading during flight mode. Whenever user wants to read the data of a particular ADC core; place the address of the ADC core on the address lines: ADDR [3:0] and then asserts SS N signal. Thereafter, three dummy bytes are written on SPI bus and 24 bit data is received through DOUT. Valid data from device will be available at the falling edge of DRDY. During this mode no commands will be recognized by the device. The steps of reading the data during flight mode are as follows:

- 1. Set the mode of the device in Flight mode.
- 2. Set the address lines corresponding to a particular ADC core.
- 3. Wait for negative edge of DRDY signal.
- 4. Enable the SS\_N signal.
- 5. Read the data of selected ADC through DOUT.
- 6. Disable the SS\_N Signal.
- 7. To read data from other ADC cores, repeat steps 2 to 6.

In Multi-Core RDAS device, a single calibration engine is used to process the data coming from all the 16 ADC's digital filter. The calibration engine takes 20  $f_{CLK}$  to calibrate the data and this is the high period of DRDY after any channel change or after the new data is available within the same channel. Whenever there is a channel change or new data is available, DRDY goes high for 20  $f_{CLK}$ . But there may be a case after the channel change that during calibration process, new data from the

### FLIGHT MODE TIMING DIAGRAM

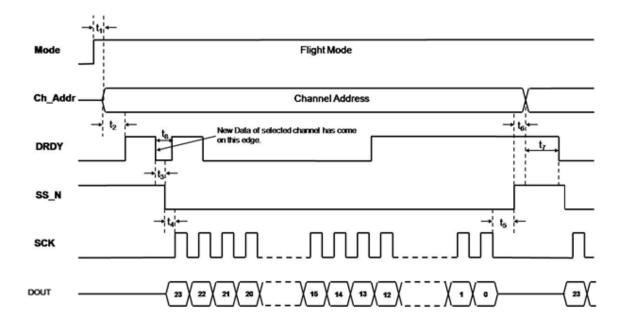



Fig. 3 Timing Specifications During Flight Mode.

#### TIMING SPECIFICATION TABLE

| SPEC           | DESCRIPTION                                                                           | MIN | MAX | UNIT                    |
|----------------|---------------------------------------------------------------------------------------|-----|-----|-------------------------|
| t <sub>1</sub> | Mode change to channel change                                                         | 1   |     | t <sub>clk</sub> period |
| t <sub>2</sub> | Channel Change to DRDY High (Note:1)                                                  | 4   |     | t <sub>clk</sub> period |
| t <sub>3</sub> | DRDY Low to SS_N low (Note:2)                                                         |     | 1   | t <sub>clk</sub> period |
| t4             | SS_N low to 1 <sup>st</sup> edge of SCK.                                              | 1   |     | t <sub>clk</sub> period |
| t <sub>5</sub> | SCK low to SS_N High                                                                  | 5   |     | t <sub>clk</sub> period |
| t <sub>6</sub> | SS_N High to channel change                                                           | 1   |     | t <sub>clk</sub> period |
| t7             | Channel change to DRDY Low                                                            | 20  | 40  | t <sub>clk</sub> period |
| t <sub>8</sub> | Low period of DRDY in case of new data come at the same edge when DRDY was going low. | 1   |     | t <sub>cik</sub> period |

Notes: (1) In case the DRDY of the previous channel is turns low before changing the channel.

(2) Once DRDY goes low, user has to make SS\_N low within one master clock. Detailed explanation of same is available in the DRDY section.

filter is available. In this case calibration unit takes the new data and process it. So the DRDY may remain high for 40  $f_{CLK}$  as shown in Fig. 2.

Also there may be a special case that after the channel change, as DRDY goes low after 20  $f_{CLK}$ , at the same time the new data from the filter comes. So after one  $f_{CLK}$ , DRDY again goes high because the calibration unit starts processing the new data coming from the digital filter of the selected channel. In this case, DRDY will go low only for one  $f_{CLK}$  and after that it will become high again. In this case the user has to pull down the SS N within one  $f_{CLK}$  to avoid the corruption of data. In this particular case, after detecting the low edge of DRDY, if user makes the SS N low after one  $f_{CLK}$ , then there may a case that SS N is pull down at the time when DRDY was high. So, the corrupted data will be transferred. Kindly refer to Fig. 3 for better understanding of this case.

When it is not possible for the user to make the SS N low within the one master clock of DRDY low edge after channel change, user need to check the status of DRDY after making the SS N low. If the DRDY is high then again wait till DRDY goes low before reading the data. For e.g., in Fig. 3 after detecting low DRDY edge, if the user make the SS N low after more than one f<sub>CLK</sub> (when the DRDY may become high), wrong data will be transferred. Now if user again checks the status of DRDY within two master clocks, it will remain high and user has to wait till DRDY goes low before reading the data.

### OVERLOAD AND OVERRANGE DETECTION MODULE:

These Modules prevents rollover of digital output code when analog input exceeds full scale value.

Digital output code will be clipped at 7FFFFH and 800000H when analog input exceeds positive and negative full scale respectively. In case the ADC input is more than 50 % of full scale range, the Over Load detection module will clip the digital output at 7FFFFH or 800000H, accordingly.

Over-Range Detection Module also keeps into consideration of digital calibration i.e. any rollover of digital output due to calibration will also be detected by Over-Range Detection will Module and be clipped appropriately to 7FFFFFH and 800000H. To ensure the proper functioning of the Module, Over-Range Detection following constraint on OCR & FSR register value must be followed:

1. Maximum value of OCR register should not exceed  $3FFFF_H$  for negative offset correction and C00000<sub>H</sub> for positive offset correction.

2. FSR value must be positive. By default Over-Load and Over-Range Detection Modules are enabled.

# 1. Over-Load Detection module (OLDD)

- In the scenario where digital code without calibration is such that it cannot be corrected after calibration then Over-Load detection module detects overload and clip digital output appropriately to 7FFFFF<sub>H</sub> and 800000<sub>H</sub>.
- Over-load detection can be disabled by setting OLDD bit of CR2 control register.

# 2. Over-Range Detection module (ORDD)

• Over-range module checks for the digital code after digital offset and gain calibration. If digital code after gain and offset calibration is out of the

acceptable code range then digital over-range module detects overrange and clip digital output appropriately to 7FFFFF<sub>H</sub> and 800000<sub>H</sub>.

• Over-range detection can be disabled by setting ORDD bit of CR2 control register.

ORDD bit also affects digital output range. Setting ORDD bit will half the digital output range. In case of Over-Load or Over-Range detection, the primary output pin ORD will become high.

The Over-load and over-range modules work properly only when the decimation ratio is in the power of 2 i.e. the Digital Filter gain is unity. If the digital filter gain is not unity, then Over-range and Overload protection module may not prevent over-range.

### OFFSET AND GAIN CALIBRATION

Both the self offset error and system offset error in selected ADC core can be reduced with offset calibration. This is handled with two offset commands SELFOCAL and SYSOCAL. There is also a gain calibration module to compensate self gain and system gain error with SELFGAIN and SYSGAIN command respectively. Please refer calibration procedure section. Each calibration process takes five conversion cycles to complete. Therefore it takes 10 conversion cycles to complete both offset and gain error. Calibration must be performed after system reset, a change in decimation ratio or a change of the PGA. During Program mode, the user must perform the calibration on each and every core.

Calibration commands will only update the Offset Calibration Register (OCR) with appropriate offset value. However, to enable the offset correction, OCEN bit of CR1 control register has to be set separately. Similarly to apply gain correction, GCALEN bit has to be set.

SELFGAIN command is only possible at PGA1.

### CALIBRATION PROCEDURE

Multi-Core RDAS The has two commands namely SEFOCAL and SYSOCAL to compensate offset errors. Internal calibration of device is called self-calibration. Bv executing SELFOCAL command, the device shorts the ADC input and stores the offset value into OCR register in 2's complement form.

For system calibration, the user must apply appropriate 'zero signal' to the input channel and then selected execute SYSOCAL command. In this case ADC computes the offset value based on the available differential input signal and stores it into OCR register in 2's complement form. The System gain calibration requires appositive "full scale differential input signal. On executing system gain command, ADC computes a value to nullify gain error. At the completion of calibration, the DRDY signal will go Low to indicate that calibration is complete and valid data is available.

Calibration commands will only update the Offset Calibration Register (OCR) with appropriate offset value. However, to enable the offset correction, OCEN bit of CR1 control register has to be set separately. Similarly to enable gain calibration set GCALEN bit of CR1 register. Each calibration process takes five conversion cycles to complete. DRDY will be asserted to indicate completion of the calibration process. Apart from above commands, OSR and FSR can be accessed externally through RREG (Read Register) and WREG (Write Register) commands. This will provide flexibility to manually set the OCR and FSR.

### POWER ON SEQUENCES

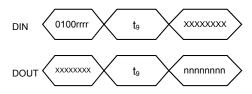
Multi-Core RDAS device needs power on sequencing. All the inputs must be applied after the power supply is settled. Analog inputs must be applied after AVDD and MVDD are settled. After DVDD/VDD\_LDO is power up, the output of LDO, OUT\_LDO (which is the 1.8V supply for the digital core) takes 240 µs to settle. Hence, all the digital input must be applied after 240 µs only.

## **COMMAND DEFINITIONS**

The commands listed below control the operation of SC1237-0 Device. Some commands are stand-alone commands (e.g. SELFOCAL) while others require additional bytes (e.g., WREG requires command and the data bytes).

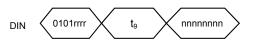
Operands: rrrr represents the register address.

nnnnnnn represents the data.


xxxx: these bits will be ignored while instruction decoding.

| COMMANDS | DESCRIPTION               | COMMANDBYTE                | 2 <sup>ND</sup> COMMANDBYTE |
|----------|---------------------------|----------------------------|-----------------------------|
| RREG     | Read from Register rrrr   | 0100rrrr(4r <sub>H</sub> ) | -N.A                        |
| WREG     | Write to Register rrrr    | 0101rrrr(5r <sub>H</sub> ) | nnnnnnn                     |
| SELFOCAL | Self Offset Calibration   | 0110xxxx(6x <sub>н</sub> ) | -N.A                        |
| SYSOCAL  | System Offset Calibration | 0111xxxx(7x <sub>H</sub> ) | -N.A                        |
| SELFGAIN | Self Gain Calibration     | 1000xxxx(8x <sub>H</sub> ) | -N.A                        |
| SYSGAIN  | System Gain Calibration   | 1001xxxx(9x <sub>H</sub> ) | -N.A                        |

### RREG (READREGISTER)


RREG (Read Register) command reads content of the specified register. The address of the register to be read is specified in the LSB nibble of the instruction.

Operands: r,n Bytes: 2 Encoding: 0100 rrrr



### WREG (WRITE REGISTER)

WREG (Write Register) command writes the data to specified register. The address of the register to be written is specified in the LSB nibble of the first byte. Second byte represents the data to be written. Operands: r, n Bytes: 2 Encoding: 0101rrrr nnnnnnn



### SELFOCAL (SELF OFFSET CALIBRATION)

This command performs Self Offset Calibration. At the end of the calibration process, offset value will be stored in 24-bit internal Offset Calibration Register (OCR) is in 2's complement format. DRDY will be asserted low to indicate completion of the command.

Operands: x Bytes: 1 Encoding: 0110 xxxx

0110XXXX DIN

### SYSOCAL (SYSTEM OFFSET CALIBRATION)

With this command ADC computes the offset value based on the available differential input signal on ADC input to nullify offset in the system. The offset value will be stored in 24-bit internal Offset Calibration Register (OCR) in 2's complement format. DRDY will be asserted low to indicate completion of the command.

Operands: x Bytes: 1 Encoding: 0111xxxx With this command ADC computes the gain value based on the available differential input signal on ADC input to nullify gain error in the system. The gain value will be stored in 24-bit internal FSR Register. DRDY will be asserted low to indicate completion of the command.

Operands: x Bytes: 1 Encoding: 1001xxxx

1001XXXX DIN

DIN 0111XXXX

### SELFGAIN (SELF GAIN CALIBRATION)

This command performs Self Gain Calibration. At the end of the calibration process, gain calibration coefficient value will be stored in 24-bit internal FSR Register. DRDY will be asserted low to indicate completion of the command.

Operands: x Bytes: 1 Encoding: 1000 xxxx

1000XXXX DIN

SYSGAIN (SYSTEM GAIN CALIBRATION)

### **CONTROL / STATUS REGISTERS**

| Address        | Register               | BIT7        | BIT6    | BIT5    | BIT4    | BIT3    | BIT2    | BIT1    | BIT0    |
|----------------|------------------------|-------------|---------|---------|---------|---------|---------|---------|---------|
| 0 <sub>H</sub> | DIGITAL_CODE_B3<br>(R) | DC23        | DC22    | DC21    | DC20    | DC19    | DC18    | DC17    | DC16    |
| 1 <sub>H</sub> | DIGITAL_CODE_B2<br>(R) | DC15        | DC14    | DC13    | DC12    | DC11    | DC10    | DC9     | DC8     |
| 2 <sub>H</sub> | DIGITAL_CODE_B1<br>(R) | DC7         | DC6     | DC5     | DC4     | DC3     | DC2     | DC1     | DC0     |
| 3 <sub>н</sub> | CR1 (RW)               | PGA2        | PGA1    | PGA0    | OCEN    | GCALEN  | REFCON  | IDACR1  | IDACR0  |
| 4 <sub>H</sub> | CR2(RW)                | Data Format | OLDD    | ORDD    | PRE1    | PRE0    | OSR10   | OSR9    | OSR8    |
| 5 <sub>H</sub> | DECIM_reg (RW)         | OSR7        | OSR6    | OSR5    | OSR4    | OSR3    | OSR2    | OSR1    | OSR0    |
| 7 <sub>н</sub> | OCR1(RW)               | OCR07       | OCR06   | OCR05   | OCR04   | OCR03   | OCR02   | OCR01   | OCR00   |
| 8 <sub>H</sub> | OCR2(RW)               | OCR15       | OCR14   | OCR13   | OCR12   | OCR11   | OCR10   | OCR09   | OCR08   |
| 9 <sub>H</sub> | OCR3(RW)               | OCR23       | OCR22   | OCR21   | OCR20   | OCR19   | OCR18   | OCR17   | OCR16   |
| A <sub>H</sub> | FSR1(RW)               | FSR07       | FSR06   | FSR05   | FSR04   | FSR03   | FSR02   | FSR01   | FSR00   |
| Вн             | FSR2(RW)               | FSR15       | FSR14   | FSR13   | FSR12   | FSR11   | FSR10   | FSR09   | FSR08   |
| Сн             | FSR3(RW)               | FSR23       | FSR22   | FSR21   | FSR20   | FSR19   | FSR18   | FSR17   | FSR16   |
| D <sub>H</sub> | IDAC1 (RW)             | IDAC1_7     | IDAC1_6 | IDAC1_5 | IDAC1_4 | IDAC1_3 | IDAC1_2 | IDAC1_1 | IDAC1_0 |
| E <sub>H</sub> | IDAC2 (RW)             | IDAC2_7     | IDAC2_6 | IDAC2_5 | IDAC2_4 | IDAC2_3 | IDAC2_2 | IDAC2_1 | IDAC2_0 |

The operation of the device is set up through following control / status registers.

R: Read only registers

RW: Read/Write registers

Note: Atresetallregistersareinitializedto00<sub>H</sub> on reset.

#### CR1 (ADD: 03H) CONTROLREGISTER-1

|      |      |      |      | BIT3   |        |        |            |  |
|------|------|------|------|--------|--------|--------|------------|--|
| PGA2 | PGA1 | PGA0 | OCEN | GCALEN | REFCON | IDACR1 | IDACR<br>0 |  |

BIT 7-5:PGA2:PGA1:PGA0: Programmable Gain Amplifier selection

| 000=1  | 100 = 16  |
|--------|-----------|
| 001=2  | 101 = 32  |
| 010= 4 | 110 = 64  |
| 011= 8 | 111 = 128 |

Bit4: OCEN: Offset Calibration Enable bit OCE = 1: Enable offset calibration OCE = 0: Disable offset calibration

Bit3: GCALEN: Gain calibration Enable bit GCALEN = 1: Enable Gain calibration GCALEN = 0: Disable Gain calibration

Bit2: REFCON: Reference Control Bit 0: REFP\_LO and REFN\_LO will be selected 1:REFP\_HI and REFN\_HI will be selected

Bit1-0: IDACR1: IDACR0: Range Selection for current in IDAC 00 = off 10 = 1 mA 01 = 0.5 mA 11 = 2 mA

### CR2 (ADD: 04H) CONTROL REGISTER- 2

| BIT7           | BIT6 | BIT5 | BIT4 | BIT3 | BIT2  | BIT1 | BIT0 |  |
|----------------|------|------|------|------|-------|------|------|--|
| DATA<br>FORMAT | OLDD | ORDD | PRE1 | PRE0 | OSR10 | OSR9 | OSR8 |  |

Bit7: Data Format of the output code

1 = Offset Binary output data

0 = 2's complement output data

Bit6: OLDD

0 = Enable over-load detection

1 = Disable over-load detection

Bit5: ORDD:

0 = Enable over-range detection

1 = Disable over-range detection

It makes output range half if disabled

| ORDD BIT | ANALOG<br>INPUT   | DIGITAL<br>OUTPUT CODE |
|----------|-------------------|------------------------|
|          | +V <sub>REF</sub> | 7FFFFF <sub>H</sub>    |
| 0        | 0                 | 00000н                 |
|          | -V <sub>REF</sub> | 800000 <sub>H</sub>    |
|          | +V <sub>REF</sub> | 3FFFFF <sub>H</sub>    |
| 1        | 0                 | 00000н                 |
|          | -V <sub>REF</sub> | С00000н                |

| PRE1:PRE0 | <b>ƒ</b> мор          |
|-----------|-----------------------|
| 00        | f <sub>CLK</sub> /32  |
| 01        | f <sub>ськ</sub> /64  |
| 10        | f <sub>CLK</sub> /128 |
| 11        | f <sub>CLK</sub> /256 |

Bit2-0:OSR10:OSR9: OSR8 control bits. Three MSBs of 11bits of decimation ratio Note: Any update in CR1 or CR2 control register will reset modulator and digital filter. DRDY will also go high.

#### DECIM (ADD: 05H) CONTROLREGISTER-3

| BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|------|------|------|------|------|------|------|------|
| OSR7 | OSR6 | OSR5 | OSR4 | OSR3 | OSR2 | OSR1 | OSR0 |

#### BIT 7-0:OSR7:OSR0

These bits are 8 LSB bits of 11 bit decimation ratio

#### OCR1 (ADD: 07<sub>H</sub>) OFFSET CALIBRATION **REGISTER-1**

(Least Significant Byte)

| BIT7  | BIT6  | BIT5  | BIT4  | BIT3  | BIT2  | BIT1  | BIT0  |  |
|-------|-------|-------|-------|-------|-------|-------|-------|--|
| OCR07 | OCR06 | OCR05 | OCR04 | OCR03 | OCR02 | OCR01 | OCR00 |  |

### OCR2 (ADD: 08H) OFFSET CALIBRATION **REGISTER-2**

(Middle Byte)

| BIT7  | BIT6  | BIT5  | BIT4  | BIT3  | BIT2  | BIT1  | BIT0  |
|-------|-------|-------|-------|-------|-------|-------|-------|
| OCR15 | OCR14 | OCR13 | OCR12 | OCR11 | OCR10 | OCR09 | OCR08 |

#### OCR3 (ADD: 09H) OFFSET CALIBRATION **REGISTER-3**

(Most Significant Byte)

| BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|------|------|------|------|------|------|------|------|
|      |      |      |      |      |      |      |      |

| OCR23 | OCR22 | OCR21 | OCR20 | OCR19 | OCR18 | OCR17 | OCR16 |
|-------|-------|-------|-------|-------|-------|-------|-------|
|       |       |       |       |       |       |       |       |

#### FSR1 (ADD: FULL SCAEE 0A<sub>H</sub>) **REGISTER-1**

(Least Significant Byte)

|      |      | 1    | 1    | ESD03 |      |      | •    |
|------|------|------|------|-------|------|------|------|
| BIT7 | BIT6 | BIT5 | BIT4 | BIT3  | BIT2 | BIT1 | BIT0 |

#### FSR2 (ADD: 0B<sub>H</sub>) FULL SCAEE **REGISTER-2**

(Middle Byte)

BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0

|  | FSR15 | FSR14 | FSR13 | FSR12 | FSR11 | FSR10 | FSR09 | FSR08 |
|--|-------|-------|-------|-------|-------|-------|-------|-------|
|--|-------|-------|-------|-------|-------|-------|-------|-------|

#### FSR3 (ADD: FULL SCAEE 0C<sub>H</sub>) **REGISTER-3**

(Most Significant Byte)

| BIT7  | BIT6  | BIT5  | BIT4  | BIT3  | BIT2  | BIT1  | BIT0  |
|-------|-------|-------|-------|-------|-------|-------|-------|
| FSR23 | FSR22 | FSR21 | FSR20 | FSR19 | FSR18 | FSR17 | FSR16 |
| IDAC  | :1 (A |       | AC1   |       |       |       |       |

| BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|------|------|------|------|------|------|------|------|

| IDAC1     IDAC1 <th< th=""></th<> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

The DAC code bits to set IDAC1 current.

#### IDAC2 (ADD: 0FH) CURRENT DAC2

| BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|------|------|------|------|------|------|------|------|
|      |      |      |      |      |      |      |      |

| IDAC2 | IDAC2 | IDAC2 | IDAC1 | IDAC2 | IDAC2 | IDAC2 | IDAC2 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| _7    | _6    | _5    | _4    | _3    | _2    | _1    | _0    |

The DAC code bits to set IDAC2 current

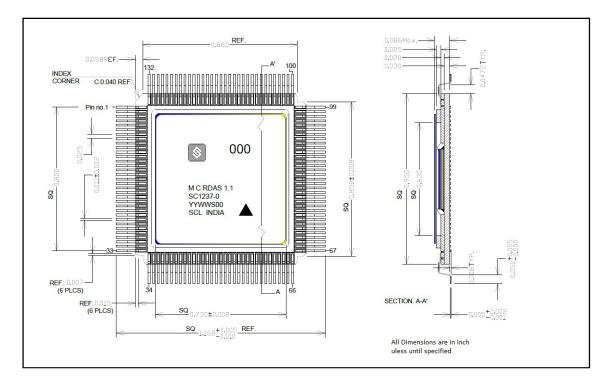
### DIGITAL CODE B3 (ADD: 00H) DIGITAL OUTPUT CODE

(MOST SIGNIFICANT BYTE)

|      |      |      |      | BIT3 |      |      |      |  |
|------|------|------|------|------|------|------|------|--|
| DC23 | DC22 | DC21 | DC20 | DC19 | DC18 | DC17 | DC16 |  |

#### DIGITAL\_CODE\_B2 (ADD: 01H) DIGITAL OUTPUT CODE (MIDDLE BYTE)

|      |      |      |      | BIT3 |      |      |      |
|------|------|------|------|------|------|------|------|
| DC15 | DC14 | DC13 | DC12 | DC11 | DC10 | DC09 | DC08 |


### DIGITAL\_CODE\_B1 (ADD: 02<sub>H</sub>) DIGITAL OUTPUT CODE

(LEAST SIGNIFICANT BYTE)

| BIT7 | BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BIT0 |
|------|------|------|------|------|------|------|------|
| DC07 | DC06 | DC05 | DC04 | DC03 | DC02 | DC01 | DC00 |

## PACKAGE INFORMATION

### 132 Pin CQFP PACKAGE



### DISCLAIMER:

Semi-Conductor Laboratory (SCL) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and specifications, and to discontinue any product. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

Reproduction of significant portions of SCL information in SCL data sheets is permissible only if reproduction is without alteration and is accompanied by all associated conditions, limitations, and notices. SCL is not responsible or liable for such altered documentation.

## **REVISION HISTORY**

- MCRDAS1.0 (SC1221-0) and MCRDAS1.1 (SC1237-0) are pin-to-pin compatible devices. One minor change in SC1237-0 is that the LDO output (1.8V) is internally shorted to digital core supply (DVDD18). Hence, pin number 47 and 53 are N.C.
- 2) The Over Load detection module is added to prevent any roll-over of the digital code when the input range exceeds the full scale range of ADC.
- 3) Pre-scalar values are changed from SC1221-0.

| PRE1:PRE0 | SC1237-0              | SC1221-0                    |  |  |
|-----------|-----------------------|-----------------------------|--|--|
|           | <b>ƒ</b> мор          | <b>f</b> mod                |  |  |
| 00        | f <sub>ськ</sub> /32  | <i>f</i> <sub>CLK</sub> /64 |  |  |
| 01        | <i>f</i> ськ /64      | <i>f</i> ськ /128           |  |  |
| 10        | f <sub>clк</sub> /128 | fclк /256                   |  |  |
| 11        | f <sub>CLK</sub> /256 | fclк /512                   |  |  |