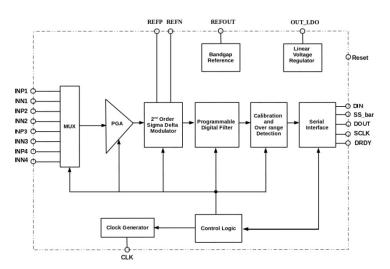


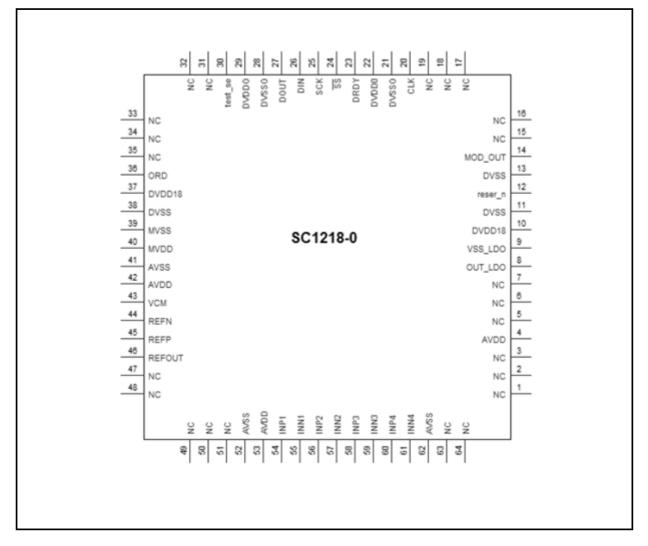
4 CHANNELS, 24-BIT Σ - Δ ANALOG TO DIGITAL CONVERTER (RADIATION HARDENED)


FEATURES:

- 24 BITS NO MISSING CODES¹
- 0.003% INL
- 19 BITS EFFECTIVE RESOLUTION (PGA = 1, OSR=2048)
 12 BITS (PGA = 128, OSR=2048)
- PGA FROM 1 TO 128 (BINARY STEPS)
- PROGRAMMABLE DATA OUTPUT RATESUP TO 20KSPS
- PRECISION ON-CHIP 1.22V REFERENCE ACCURACY: 1.5% DRIFT: ±20ppm of REFOUT
- EXTERNAL DIFFERENTIAL REFERENCE Upto 2.5V
- ON-CHIP CALIBRATION
- SPI COMPATIBLE
- 3.0V TO 3.6V
- Rad Hardened (TID) upto 300kRad
- SEL/SEU immune upto 50 LET MeVcm2/mg
- 180nm SCL CMOS standard logic process
- ESD Protection upto ±3KV HBM
- θ_{JC} =3.7°C/W

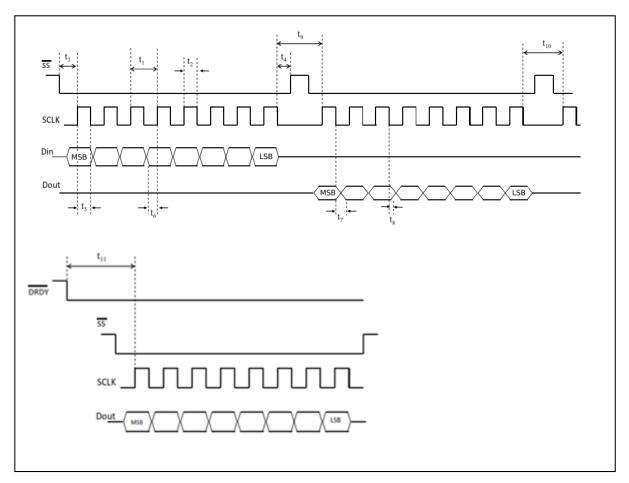
DESCRIPTION:

The **SC1218-0** is a precision, wide range, Sigma-Delta, Analog-to-Digital converter with 24-bit resolution operating from 3.0V to 3.6V. It has fully four differential multiplexed channels. The PGA (Programmable Gain Amplifier) provides selectable gains of 1 to 128 in binary steps with an effective resolution of 19 bits at PGA 1 and OSR of 2048. It uses a second order Sigma Delta Modulator that converts the analog input signal in to a digital pulse train whose average duty cycle represents the digitized signal information. The pulse train is then processed by a digital sinc3 filter to produce a digital output.


The decimation ratio of the digital filter can be programmed by user either to achieve higher accuracy or higher throughput. SC1218-0 has digitally on-chip offset and gain calibration. The serial interface is SPI Compatible. It can be configured to scan all the signal input sequentially with minimum communication overhead.

Notes: (1) Tested and verified upto 14 Bits.

PIN CONFIGURATION:



PIN DESCRIPTIONS:

PINNO.	NAME	DESCRIPTION	
1	N.C.	Not Connected	
2	N.C.	Not Connected.	
3	N.C.	Not Connected	
4	AVDD	Analog Core Power Supply(3.3V)	
5	N.C.	Not Connected	
6	N.C.	Not Connected.	
7	N.C.	Not Connected	
8	OUT_LDO	LDO Output (1.8V)	
9	VSS_LDO	LDO Ground	
10	DVDD18	Digital Core Power Supply(1.8V)	
11	DVSS	Digital Core Ground	
12	reset_n	Reset ,Active Low	
13	DVSS	Digital Core Ground	
14	MOD_OUT	Modulator Output (Test Pin). To be kept floating	
15	N.C.	Not Connected	
16	N.C.	Not Connected.	
17	N.C.	Not Connected	

18	N.C.	Not Connected.
19	N.C.	Not Connected
20	CLK	Clock Input
21	DVSSO	Digital I/O ground
22	DVDDO	Digital I/O Power Supply(3.3V)
23	DRDY	Data Ready, Active Low
24	SS	Serial Interface Enable, Active Low
25	SCLK	Serial Clock
26	DIN	Serial Data Input
27	DOUT	Serial Data Output
28	DVSSO	Digital I/O ground
29	DVDDO	Digital I/O Power Supply(3.3V)
30	test se	Scan Enable
31	N.C.	Not Connected.
32	N.C.	Not Connected
33	N.C.	Not Connected
34	N.C.	Not Connected.
35	N.C.	Not Connected
36	ORD	Over Range Detection
37	DVDD18	Digital Core Power Supply(1.8V)
38	DVSS	Digital Core Ground
39	MVSS	Mixed Signal Ground
40	MVDD	Mixed Signal Power Supply(3.3V)
41	AVSS	Analog Core Ground
42	AVDD	Analog Core Power Supply(3.3V)
43	VCM	Common mode Voltage (1.65V) output Pin.
44	REFN	Negative Differential Reference Input
45	REFP	Positive Differential Reference Input
46	REF_OUT	Output of Band Gap Reference
47	N.C.	Not Connected.
48	N.C.	Not Connected
49	N.C.	Not Connected
50	N.C.	Not Connected.
51	N.C.	Not Connected
52	AVSS	Analog Core Ground
53	AVDD	Analog Core Power Supply(3.3V)
54	INP1	Multiplexer Positive Input of channel1.
55	INN1	Multiplexer Negative Input of channel1.
56	INP2	Multiplexer Positive Input of channel2.
57	INN2	Multiplexer Negative Input of channel2.
58	INP3	Multiplexer Positive Input of channel3.
59	INN3	Multiplexer Negative Input of channel3.
60	INP4	Multiplexer Positive Input of channel4.
61	INN4	Multiplexer Negative Input of channel4.
62	AVSS	Analog Core Ground
63	N.C.	Not Connected.
64	N.C.	Not Connected

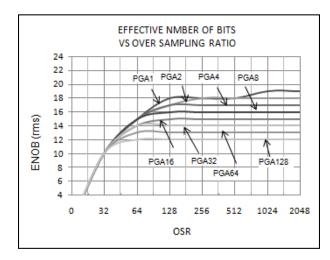
TIMING SPECIFICATIONS:

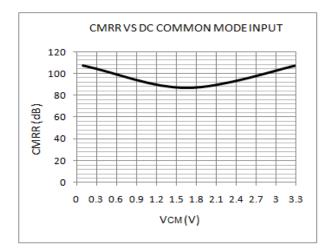
TIMING SPECIFICATION TABLES:

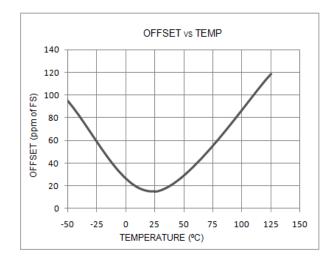
SPEC	DESCRIPTION	MIN	MAX	UNIT
t1	SCLK period	4 cycle		tclk Period
t2	SCLK pulse width (High and Low)	2 cycle		tclk Period
t ₃	SS low to first SCLK edge	100		ns
t4	Last SCLK falling edge to SS HIGH	100		ns
t ₅	SCK rising edge to DIN valid (Hold time)	50		ns
t ₆	DIN valid to SCLK rising edge (Setup time)	50		ns
t7	SCLK falling Edge to valid new Dout		50	ns
t ₈	SCLK falling Edge to DOUT, Hold Time	0		ns²
t9	Delay between last SCLK edge of 1st byte transfer and first SCLK edge for subsequent 2nd byte transfer : RDATA, RDATAC, RREG, WREG Command	50		tclk Period
t 10	Final SCLK edge of one command until first edge SCLK of next command	4		tclk Period
t11	DRDY LOW to first SCLK edge of first byte transfer for RDATAC command	15		tclk Period
t11	DRDY LOW to first SCLK edge of first byte transfer for RDATA command	0		tclk Period

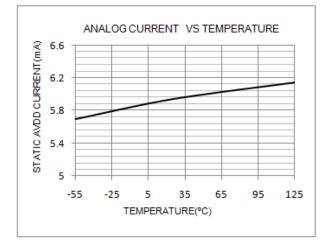
Notes: (1) DOUT goes immediately into tri-state whenever SS is high (2) DOUT should be sampled externally on rising edge of SCLK. DOUT will remain valid till next falling edge.

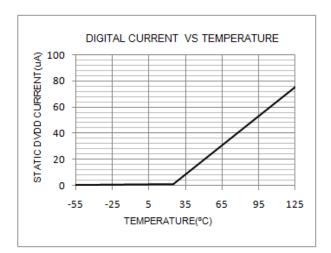
ELECTRICAL CHARACTERISTICS

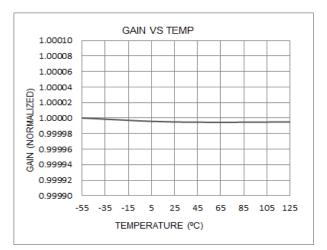

All Specifications AVDD, MVDD, DVDDO= +3.3V, DVDD18 = +1.8V, Temp. = 25°C, OSR=2048, f_{MOD} = 78.125 KHz, f_{CLK} =2.5MHz, PGA=1, f_{Data} = 38.147Hz, REF IN+ =2.65V, REF IN- =0.65V, unless otherwise specified.

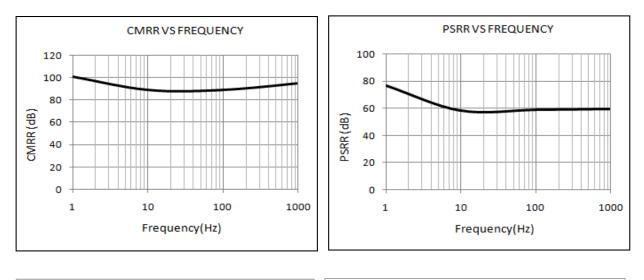

PARAMETER			SC1218-0	SC1218-0	
PARAMETER	TESTS CONDITIONS	MIN	TYP	MAX	UNITS
ANALOG					
Analog Input Range		0		AVDD	V
Full Scale Input Range	V _{INP} -V _{INN}	-V _{REF} /PGA		+V _{REF} /PGA	V
Programmable Gain Amplifier	User Selectable	1		128	
Static Input Current			-	1.0	μA
Input Capacitance			2		pF
Bandwidth			-		
Sinc ³ Filter***	-3dB		0.262^*f_{Data}		Hz
Differential Input Impedance	Modulator Frequency=78KHz		100		ΚΩ
DEVICE PERFORMANCE					
Resolution		24			Bits
No Missing Code*	OSR=512, f _{CLK} =5MHz, f _{MOD} = f _{CLK} /32	14			Bits
Integral Non-Linearity	Best Fit Method			±0.003	% of FS
Offset Error	After Calibration			25	ppm of FS
Offset Drift	-55°C to +125°C			2.5	ppm of FS/°C
Gain Error	After Calibration			0.025	% of FS
Gain Drift	-40°C to +125°C			0.03	ppm /°C
Effective Resolution	Based on 100 samples			19	Bits
Common-Mode Rejection	At DC		85		dB
	f_{CM} =10Hz, f_{DATA} =30Hz		89		dB
	f_{CM} =100Hz, f_{DATA} =30Hz		89		dB
	f_{CM} =1KHz, f_{DATA} =30Hz		95		dB
Power Supply Rejection	$DC,dB = -20 \log(\Delta VOUT / \Delta VDD)$		77		dB
	$V_{ac}=\pm 660 \text{mV}_{P-P}, 10 \text{Hz}, f_{DATA}=30 \text{Hz}$		58		dB
	$V_{ac}=\pm 660 \text{mV}_{P-P}$, 100Hz, $f_{DATA}=30$ Hz		59		dB
	$V_{ac}=\pm 660 \text{mV}_{P-P}, 1 \text{KHz}, f_{DATA}=30 \text{Hz}$		60		dB
ON CHIP VOLTAGE REFERENCE					
	Nalad	10	4.00	1.00	V
Output Voltage	No Load	1.2	1.22	1.26	-
Drift				±80	ppm/⁰C
Start up Time**				50	μS %
Load Regulation VOLTAGE REFERENCE INPUT	@Full Load Current = 2.5mA			1.0	%
			2.0	0.5	V
VREF	(REFIN+)-(REFIN-)		2.0	2.5	v
CLOCK INPUT f _{CLK}			2.5	20	MHz
POWER SUPPLY REQUIREMENT			2.0	20	
Supply Voltage	AVDD, DVDDO,MVDD	3.0	3.3	3.6	V
Cappiy Voltage	DVDD18	1.62	1.8	1.98	V
Analog Current		1.02	6	7	mA
Digital Current	IDVDD18		1000	1500	μA
	-0400.10				P47 4
ON CHIP LDO	1				•
Output Voltage	OUT_LDO	1.71	1.80	1.89	V
Line Regulation				1.0	%
Load Regulation	@Full Load Current = 5mA			1.0	%
Temp Drift	-55°C to +125°C			±200	ppm/⁰C
TEMPERATURE RANGE					
Operating		-55		125	°C
Total Ionize Dose	Upto 300KRad		Pass		
Single Event Effect					
Single Event Latch up	Upto 50 LET (MeV-cm ² /mg)		Pass		
		1			

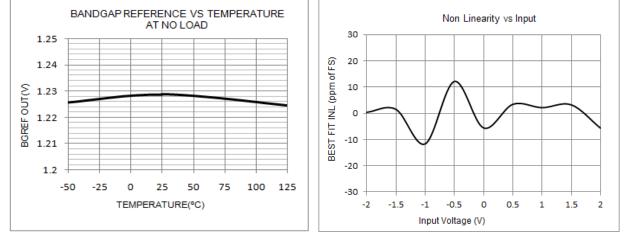

*Missing codes are verified and tested upto 14bits. Device may perform for better results. **Simulated Result


ELECTRICAL CHARACTERISTICS


All Specifications AVDD, MVDD, DVDDO= +3.3V, DVDD18 = +1.8V, Temp. = 25°C, OSR=2048, f_{MOD} = 78.125 KHz, f_{CLK} =2.5MHz, PGA=1, f_{Data} = 38.147Hz, REF IN+ =2.65V, REF IN- =0.65V, unless otherwise specified.





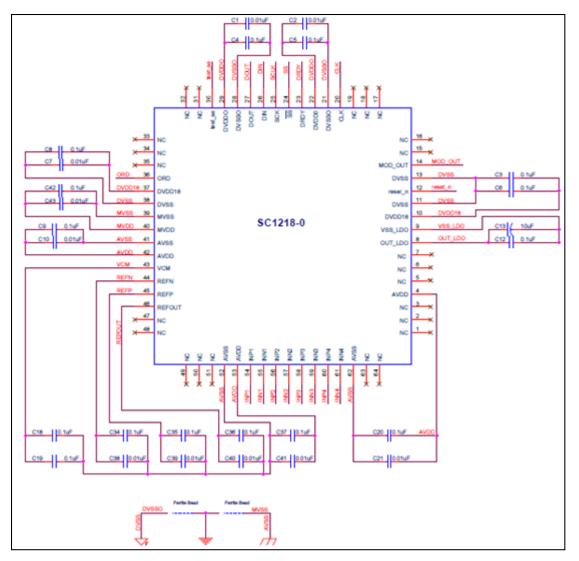


ELECTRICAL CHARACTERISTICS

All Specifications AVDD, MVDD, DVDDO= +3.3V, DVDD18 = +1.8V, Temp. = 25°C, OSR=2048, f_{MOD} = 78.125 KHz, f_{CLK} =2.5MHz, PGA=1, f_{Data} = 38.147Hz, REF IN+ =2.65V, REF IN- =0.65V, unless otherwise specified.

DIGITAL CHARACTERISTICS

DVDDO= 3.0V to 36V


PARAMETER	TESTS CONDITIONS	SC1218-0			UNITS
PARAMETER		MIN	TYP	MAX	UNITS
Logic Family			CMOS		
Logic Level: V _{IH}		2		DVDDO	V
VIL		DVSS		0.8	V
V _{OH}	I _{OH} =8mA	3.0			V
V _{OL}	I _{OL} =8mA	DVSS		0.4	V
Input Leakage: I _{IH}	V _I =DVDDO			1	μA
I _{IL}	V _I =DVSS	-1			μA

ABSOLUTE MAXIMUM RATING

PARAMETER	SC1218-0		UNITS
	MIN	MAX	
AVDD to AVSS	-0.3	4.3	V
DVDDO to DVSS	-0.3	4.3	V
DVDD18 to DVSS	-0.3	2.2	V
INP, INN	-0.3	AVDD+0.3	V
Digital Input Voltage to DGND	-0.3	DVDDO+0.3	V

Digital Output Voltage to DVSS	-0.3	DVDDO+0.3	V	
Digital Output Current		8	mA	
Maximum Ambient Temperature		125	°C	

TEST CIRCUIT DIAGRAM

PCB LAYOUT RECOMMENDATION

The test / application board should be four layer PCB. To achieve highest level of performance, surface-mount components to be used wherever possible. This reduces the trace length and minimizes the effects of parasitic capacitance and inductance. The board should use separate ground with all the analog signals and the digital signals. Bypass capacitors are strongly recommended at power supply and reference pins of the converter. User should also use R-C filter (49.9 Ω and 47pF) on each input to have better performance.

OVERVIEW

INPUTMULTIPLEXER

The input analog multiplexer can select any of the four differential inputs. The output of the multiplexer is connected internally to ADC input. Analog multiplexer channel can be selected by setting MSEL1:MSEL0 bits in CR1 control register.

PROGRAMMABLEGAINAMPLIFIER

The Programmable Gain Amplifier (PGA) can be set to gains of 1, 2, 4, 8, 16, 32, 64, or 128. Adjusting the internal gain of a sigma delta modulator is a technique, which can be used to get an appropriate LSB size for the transducers application. It will improve the resolution of the ADC. PGA gain can be selected by setting PGA2:PGA0 bits in CR1 control register.

MODULATOR

A second order single loop sigma delta modulator is used in the Sigma Delta ADC. The sigma delta modulator converts the input signal into a digital pulse train whose average duty cycle represents the digitized signal information. The integrators used in the are switched capacitor modulator based. The first integrator of the modulator is auto-zeroed.

The modulator runs at clock frequency f_{MOD} that can be adjusted by setting the appropriate value of PRE1: PRE0 of CR2 control register as shown in the following table:

PRE1:PRE0	ƒ мор
00	<i>f</i> ськ /16
01	fclк /32

10	f _{CLK} /64
11	fclк /128

Where f_{CLK} is external clock frequency

Themodulatorisdesignedtoworkatamax imumsamplingfrequencyof*625KHz*.The output of modulator is available at MOD_OUT pin for the diagnosis purpose.

PROGRAMMABLE DIGITAL FILTER

The on-chip digital filter processes the single bit data stream from the modulator using a sinc3 filter. The sinc filters are conceptually simple, efficient and flexible, especially where variable resolution and data rates are required. Output data rate of digital filter can be programmed by setting OSR2:OSR0 bits of CR2 control register.

OSR2:OSR0	Output Data Rate
000	<i>f</i> мод /2048
001	<i>f</i> мод /1024
010	<i>f</i> мод /512
011	<i>f</i> мод /256
100	<i>f</i> _{МОD} /128
101	<i>f</i> _{мод} /64
110	<i>f</i> мод /32

Whenever there is step change in input or MUX selection, digital filter requires three cycles to settle.

DRDY (DATA READY)

The DRDY pin is used as a status signal to indicate when new digital code is ready to read. DRDY goes low when new data is available. It becomes high when a read operation from the data register is executed using RDATA or RDATAC command. The DRDY pin goes high at the middle of read of 2ndMSB byte. In case, when no read operation is performed, DRDY will remain low.

BANDGAP REFERENCE

The device has on chip 1.2V bandgap reference circuitry. To use it, the user needs to connect it externally with ADC reference pins.

SERIAL INTERFACE

The serial interface is standard fourwire SPI compatible (DIN, DOUT, SCLK and SS).SCLK frequency can go up to f_{CLK} /4. If SS pin goes HIGH the serial interface will reset and DOUT pin will become tri-state.

The SS must be LOW during the communication. DIN is the serial data input port. It is internally sampled at positive edge of SCLK by SPI. DOUT is the serial data output port and is launched at negative edge of SCLK.

SS pin can be tied low to use SPI as 3wire interface.

OFFSET AND GAIN CALIBRATION

Both self offset error in SC1218-0 device or complete system offset error can be reduced with offset calibration. This is handled with two offset commands SEFOCAL and SYSOCAL. There is also a gain calibration module to compensate system gain error with commands SELFGAIN and SYSGAIN. Please refer calibration procedure section. Each calibration process takes five conversion cycles to complete. Calibration must be performed after system reset, a change in decimation ratio or a change of the PGA.

Calibration commands will only update the Offset Calibration Register (OCR) with appropriate offset value. However, to enable the offset correction, OCEN bit of CR1 control register has to be set separately. Similarly to apply gain correction, GCALEN bit has to be set. SELFGAIN command is only applicable at PGA1.

OVER-LOAD DETECTION MODULE

Where digital code without calibration is such that it cannot be corrected after calibration then Over-Load detection module detects over-load and clip digital output appropriately to 7FFFFH and 800000H.

Status of over-load detection module is available at ORD Pin. This pin will become high in case of over-load condition.

Over-load detection can be disabled by setting OLDD flag of CR2 control register. By default it is enabled.

OVER-RANGE DETECTION MODULE

If digital code after gain and offset calibration is out of the acceptable code range then digital over-range module detects over-range and clip digital output appropriately to 7FFFFF_H and 800000н. То ensure the proper functionina of the Over Range Detection Module, following constraint on OCR & FSR register value must be followed:

Maximum value of OCR register should not exceed $3FFFF_H$ for negative offset correction and C00000_H for positive offset correction. FSR value must be positive.

When device is in the over-range condition, the ORD pin will become high.

Over-range detection can be disabled by setting OVDD flag of CR2 control register. By default it is enabled.

OVDD bit also affects digital output range. Setting OVDD bit will half the digital output range as shown below.

OVDD BIT	ANALOG INPUT	DIGITAL OUTPUT CODE
	+V _{REF}	7FFFFF _H
0	0	000000 _H
	-V _{REF}	800000н
	+V _{REF}	3FFFFF _H
1	0	00000н
	-V _{REF}	С00000н

CALIBRATION PROCEDURE

TheSC1218-0 device has two commands namely SEFOCAL and SYSTEMOCAL to compensate offset errors. Internal calibration of device is called self calibration. By executing SELFOCAL command, the device shorts the ADC input and stores the offset value into OCR register in 2's complement form.

For system calibration, the user must apply appropriate 'zero signal' to the selected input channel and then execute SYSOCAL command. In this case ADC computes the offset value based on the available differential input signal and stores it into OCR register in 2's complement form. The System gain calibration requires appositive "full scale differential input signal. On executing system gain command, ADC computes a value to nullify gain error.

Calibration commands will only update the Offset Calibration Register (OCR) with appropriate offset value. However, to enable the offset correction, OCEN bit of CR1 control register has to be set separately. Similarly to enable gain calibration set GCALEN bit of CR1 register. Each calibration process takes five conversion cycles to complete. DRDY will be asserted to indicate completion of the calibration process.

Apart from above commands, OSR and FSR can be accessed externally through RREG (Read Register) and WREG (Write Register) commands. This will provide flexibility to manually set the OCR and FSR.

When FSR is externally loaded, follow the procedure as below.

- Perform Self/System gain calibration as sated above and read the FSR register and note down the value.
- Divide FFFFFC00000 by noted value of FSR register and take its integer portion.
- This calculated value has to be written into FSR register at next power ON in order to perform gain calibration without command.

For example: Let noted value of FSR register is 3ee259.

The value to be written in the FSR reg. after power off and on will be:

FFFFC00000/3ee259 = 4122B7.

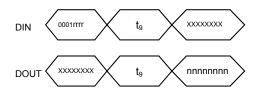
COMMAND DEFINITIONS

The commands listed below control the operation of SC1218-0 Device. Some commands are stand-alone commands (e.g. STOPC) while others require additional bytes (e.g., WREG requires command and the data bytes).

Operands:

rrrr represents the register address.

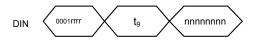
nnnnnnn represents the data.


xxxx: these bits will be ignored while instruction decoding.

COMMANDS	DESCRIPTION	COMMANDBYTE	2 ND COMMANDBYTE
RDATA	Read Data	0001 xxxx (1x _H)	-N.A
RDATAC	Read Data Continuously	0010 xxxx (2x _H)	-N.A
STOPC	Stop Read Data Continuously	0011 xxxx (3x _н)	-N.A
RREG	Read from Register rrrr	0100rrrr(4r _H)	-N.A
WREG	Write to Register rrrr	0101rrrr(5r _H)	nnnnnnn
SELFOCAL	Self Offset Calibration	0110xxxx(6x _H)	-N.A
SYSOCAL	System Offset Calibration	0111xxxx(7x _H)	-N.A
SELFGAIN	Self Gain Calibration	1000xxxx(8x _H)	-N.A
SYSGAIN	System Gain Calibration	1001xxxx(9x _H)	-N.A

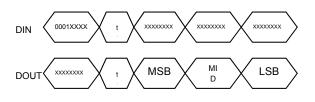
RREG (READREGISTER)

RREG (Read Register) command reads content of the specified register. The address of the register to be read is specified in the LSB nibble of the instruction.

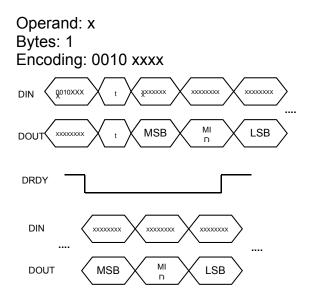

Operands: r, n Bytes: 2 Encoding: 0100 rrrr

WREG (WRITE REGISTER)

WREG (Write Register) command writes the data to specified register. The address of the register to be written is specified in the LSB nibble of the first byte. Second byte represents the data to be written.

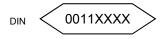

Operands: r, n Bytes: 2 Encoding: 0101rrrr nnnnnnn

RDATA (READDATA)


This command reads a single 24bitADCconversionresult.In response to RDATA command ADC transmit 24-bit digital code. Digital code is available at DOUT pin in 8-bit format with most significant byte first. RDATA command must be followed by 3-byte read operation. On completion of read operation, DRDY goes high.

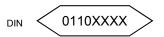
Operand: x Bytes: 1 Encoding: 0001 xxxx

RDATAC (READ DATA CONTINUOUS)


RDATAC command enables the continuous output of new data on each DRDY. This command eliminates the need to send the Read Data Command on each DRDY. In case of read data continuous command user can directly perform 3 read operation to read 24-bit digital code. DRDY will go high in response to 3-byte read operation. RDATAC command must be followed by STOPC command before issuing any other command.

STOPC (STOP READ DATA CONTINUOUS)

This command ends the continuous data output mode. After this command DRDY will also go high.


Operands: x Bytes: 1 Encoding: 0011 xxxx

SELFOCAL (SELF OFFSET CALIBRATION)

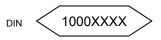
This command performs Self Offset Calibration. At the end of the calibration process, offset value will be stored in 24-bit internal Offset Calibration Register (OCR) is in 2's complement format. DRDY will be asserted low to indicate completion of the command.


Operands: x Bytes: 1 Encoding: 0110 xxxx

SYSOCAL (SYSTEM OFFSET CALIBRATION)

With this command ADC computes the offset value based on the available differential input signal on selected analog channel to nullify offset in the system. The offset value will be stored in 24-bit internal Offset Calibration Register (OCR) in 2's complement format. DRDY will be asserted low to indicate completion of the command.

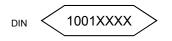
Operands: x Bytes: 1 Encoding: 0111xxxx



SEMI-CONDUCTOR LABORATORY GOVERNMENT OF INDIA

SELFGAIN (SELF GAIN CALIBRATION)

This command performs Self Gain Calibration. At the end of the calibration process, gain calibration coefficient value will be stored in 24-bit internal FSR Register. DRDY will be asserted low to indicate completion of the command.


Operands: x Bytes: 1 Encoding: 1000 xxxx

SYSGAIN (SYSTEM GAIN CALIBRATION)

With this command ADC computes the gain value based on the available differential input signal on selected analog channel to nullify gain error in the system. The gain value will be stored in 24-bit internal FSR Register. DRDY will be asserted low to indicate completion of the command.

Operands: x Bytes: 1 Encoding: 1001xxxx

CONTROL / STATUS REGISTERS

Address	Register	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
0 _H	DIGITAL_CODE_B3 (R)	DC23	DC22	DC21	DC20	DC19	DC18	DC17	DC16
1 _H	DIGITAL_CODE_B2 (R)	DC15	DC14	DC13	DC12	DC11	DC10	DC9	DC8
2 _H	DIGITAL_CODE_B1 (R)	DC7	DC6	DC5	DC4	DC3	DC2	DC1	DC0
3 _H	CR1 (RW)	PGA2	PGA1	PGA0	OCEN	GCALEN	-	MSEL1	MSEL0
4 _H	CR2(RW)	ACSEN	OLDD	OVDD	PRE1	PRE0	OSR2	OSR1	OSR0
8 _H	OCR1(RW)	OCR07	OCR06	OCR05	OCR04	OCR03	OCR02	OCR01	OCR00
9 _H	OCR2(RW)	OCR15	OCR14	OCR13	OCR12	OCR11	OCR10	OCR09	OCR08
A _H	OCR3(RW)	OCR23	OCR22	OCR21	OCR20	OCR19	OCR18	OCR17	OCR16
B _H	FSR1(RW)	FSR07	FSR06	FSR05	FSR04	FSR03	FSR02	FSR01	FSR00
Сн	FSR2(RW)	FSR15	FSR14	FSR13	FSR12	FSR11	FSR10	FSR09	FSR08
D _H	FSR3(RW)	FSR23	FSR22	FSR21	FSR20	FSR19	FSR18	FSR17	FSR16

The operation of the device is set up through following control / status registers.

R: Read only registers

RW: Read/Write registers

Note: At reset all registers are initialized to $00_{\rm H}$.

CR1 (ADD: 03_H) CONTROLREGISTER-1

BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
PGA2	PGA1	PGA 0	OCE N	GCALE N	-	MSEL 1	MSEL 0

BIT 7-5:PGA2:PGA1:PGA0: Programmable Gain Amplifier selection 000=1 100 = 16 001=2 101 = 32 100=64

010-4	110 - 64
011= 8	111 = 128

Bit4: OCEN: Offset Calibration Enable bit OCE = 1: Enable offset calibration OCE = 0: Disable offset calibration

Bit3: GCALEN: Gain calibration Enable bit GCALEN = 1: Enable Gain calibration GCALEN = 0: Disable Gain calibration

Bit1-0: MSEL1: MSEL0: Analog Channel Selection 00 = Channel-0 01 = Channel-1 11 = Channel-3 **Note:** Any update in CR1 or CR2 control register will reset modulator and digital filter. DRDY will also go high.

CR2 (ADD: 04_H) CONTROL REGISTER- 2

BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
-	OLDD	OVDD	PRE1	PRE0	OSR2	OSR1	OSR0

Bit6: OLDD: Analog over range detection

0 = Enable over-load detection.

1 = Disable over-load detection.

Bit5: OVDD: Digital over range detection

- 0 = Enable over-range detection.
- 1 = Disable over-range detection.

Bit4-2: PRE2:PRE1:PRE0: Prescaler bits

PRE1:PRE0	ƒ мор
00	<i>f</i> _{CLK} /16
01	<i>f</i> ськ /32
10	<i>f</i> ськ /64
11	f _{CLK} /128

Bit2-0:OSR2:OSR0: OSR control bits.

= 000	2048 OSR
001 =	1024 OSR
010 =	512 OSR
011 =	256 OSR
100 =	128 OSR
101 =	64 OSR
110 =	32 OSR

OCR1 (ADD: 08H) OFFSET CALIBRATION REGISTER-1

(Least Significant Byte)

BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
OCR07	OCR06	OCR05	OCR04	OCR03	OCR02	OCR01	OCR00

OCR2 (ADD: 09H) OFFSET CALIBRATION REGISTER-2

(Middle Byte)

BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
OCR15	OCR14	OCR13	OCR12	OCR11	OCR10	OCR09	OCR08

OCR3 (ADD: 0AH) OFFSET CALIBRATION REGISTER-3 (Most Significant Byte)

(Most Significant Byte)

BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
OCR23	OCR22	OCR21	OCR20	OCR19	OCR18	OCR17	OCR16

FSR1 (ADD: 0B_H) FULL SCAEE REGISTER-1

(Least Significant Byte)

BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FSR07	FSR06	FSR05	FSR04	FSR03	FSR02	FSR01	FSR00

FSR2 (ADD: 0CH) FULL SCAEE REGISTER-2

(Middle Byte)

BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FSR15	FSR14	FSR13	FSR12	FSR11	FSR10	FSR09	FSR08

FSR3 (ADD: 0DH) FULL SCAEE REGISTER-3

(Most Significant Byte)

BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FSR23	FSR22	FSR21	FSR20	FSR19	FSR18	FSR17	FSR16

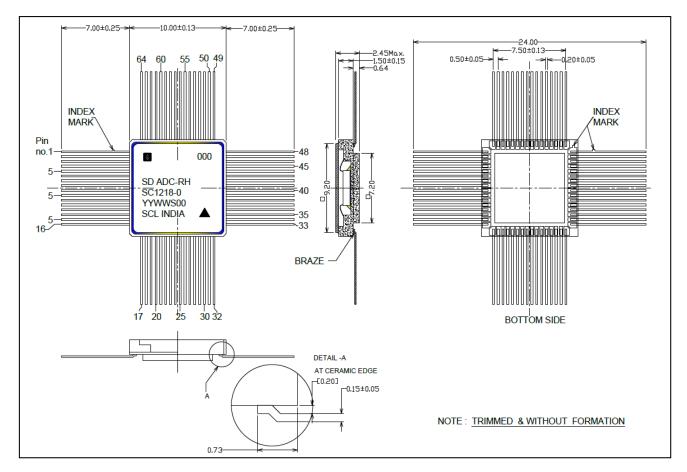
DIGITAL_CODE_B3 (ADD: 00H) DIGITAL OUTPUT CODE

(MOST SIGNIFICANT BYTE)

				BIT3			
DC23	DC22	DC21	DC20	DC19	DC18	DC17	DC16

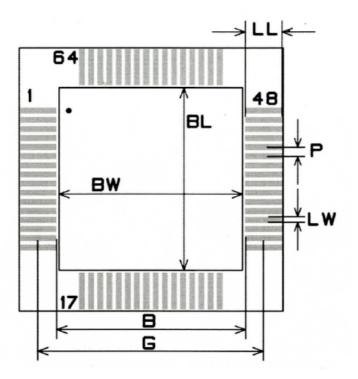
DIGITAL_CODE_B2 (ADD: 01H) DIGITAL OUTPUT CODE (MIDDLE BYTE)

_	_	_	_	BIT3		-	
DC15	DC14	DC13	DC12	DC11	DC10	DC09	DC08


DIGITAL_CODE_B1 (ADD: 02H) DIGITAL OUTPUT CODE

(LEAST SIGNIFICANT BYTE)

				BIT3			
DC07	DC06	DC05	DC04	DC03	DC02	DC01	DC00


PACKAGE INFORMATION

CERAMIC QUAD FLAT PACKAGE (CQFP-64)

NOTE: All linear dimensions are in millimetres.

PCB FOOTPRINT (LAND PATTERN)

Device Drawing Title	Device Drawing Number	Ρ	LL	LW	G	В	Part No.	Height (max.)
Sigma Delta ADC RH SC1218-0 (64 PIN CQFP)	A1542050170	0.50	2.60	0.30	13.4	10.80	SC1218-0	2.45

Note:

- 1. All Dimensions are in mm
- 2. Device body material is ceramic
- 3. Device body size BL X BW is 10.13 mm x 10.13 mm (maximum)

DISCLAIMER

Semi-Conductor Laboratory (SCL) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and specifications, and to discontinue any product. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

Reproduction of significant portions of SCL information in SCL data sheets is permissible only if reproduction is without alteration and is accompanied by all associated conditions, limitations, and notices. SCL is not responsible or liable for such altered documentation.

TERMS AND DEFINITIONS

Common-Mode Rejection Ratio (CMRR)

Common-mode rejection is the ability of a device to reject a signal that is common to both inputs. The Common mode signal can be an AC or DC signal, or a combination of the two. Common-mode rejection ratio (CMRR) is the ratio of the differential signal gain to the common-mode signal gain.

Oversampling

For an ADC, sampling the analog input at a rate much higher than the Nyquist frequency is called oversampling. Oversampling improves the ADC's dynamic performance by effectively reducing its noise floor. Improved dynamic performance leads, in turn, to higher resolution. Oversampling is the basis of sigma-delta ADCs.

Power-Supply Rejection (PSR)

Power Supply Rejection Ratio (PSRR) is the ratio of the change in DC power supply voltage to the resulting change in full-scale error, expressed in dB.

Resolution

ADC resolution is the number of bits used to represent the analog input signal.

Differential Nonlinearity (DNL) Error

For an ADC, the analog-input levels that trigger any two successive output codes should differ by one LSB (DNL = 0). Any deviation from one LSB is defined as DNL.

Gain Error

The gain error of an ADC or DAC indicates how well the slope of an actual transfer function matches the slope of the ideal transfer function. Gain error is usually expressed in LSB or as a percent of full-scale range (%FSR), and it can be calibrated out with hardware or in software. Gain error is the full-scale error minus the offset error.

Gain Error Drift

Gain-error drift is the variation in gain error due to a change in ambient temperature.

Integral Nonlinearity (INL) Error

For data converters, INL is the deviation of an actual transfer function from a straight line. After nullifying offset and gain errors, the straight line is either a best-fit straight line or a line drawn between the endpoints of the transfer function. INL is often called 'relative accuracy.'

No Missing Codes

An ADC has no missing codes if it produces all possible digital codes in response to a ramp signal applied to the analog input.

TEST METHODS

On chip reference test: Apply AVDD, DVDDO and MVDD equal to 3.3V. Apply DVDD18 equal to 1.8V. Wait for 1 to 5ms. Sink zero current (or $<1\mu$ A) from REFOUT pin and measure REFOUT voltage (No load Output). Fail if measured voltage is not within given limits. Similarly sink 2.5mA current from REFOUT in and measure REFOUT voltage (Full Load Output). Fail if it is not within limits. Calculate load regulation as given below

 $Load Regulation = \frac{No \ load \ output - full \ load \ output}{No \ load \ Output} * 100$

Check the load regulation value for pass/fail limit.

On chip LDO test: Apply AVDD, DVDDO and MVDD equal to 3.3V. Apply DVDD18 equal to 1.8V. Wait for 1 to 5ms. Sink zero current (or <1 μ A) from OUT_LDO pin. Measure OUT_LDO voltage. Fail if measured values are not within given limits. Similarly sink 5 mA current from OUT_LDO and measure OUT_LDO voltage. Fail the measure value which is not within limits.

Load Regulation: Calculate load regulation as given below and check for pass fail/limit.

Load Regulation = $\frac{\text{LDO output at No load} - \text{LDO output at 5mA load}}{\text{LDO output at No load}} * 100$

Line Regulation: Apply AVDD equal to 3.0V and measure OUT_LDO voltage (VOUT1) with 5mA load current. Apply AVDD equal to 3.6V and measure OUT_LDO voltage (VOUT2) with 5mA load current.

Line Regulation = $\frac{\text{VOUT2} - \text{VOUT1}}{(3.6 - 3.0)} * 100$

Check line regulation value for pass/fail limit.

Offset Error Test: Apply AVDD, DVDDO and MVDD equal to 3.3V. Apply DVDD18 equal to 1.8V. Apply reference supply 2V (REFP-REFN), clock 2.5MHz. Set OSR=2048 and f_{MOD} = 78.125 KHz. Select analog channel 0 and PGA equal to 1.

Offset Error before Calibration: Apply 0V input. Read ADC data output and check for pass/fail limit.

Offset Error after self offset calibration: Perform self offset calibration. Read ADC output and checks the data for pass/fail limit.

Offset Error after system offset calibration: Perform system offset calibration. Read ADC output and check for pass/fail limit.

Repeat for all PGA setting.

Full Scale Error Test: Apply AVDD, DVDDO and MVDD equal to 3.3V. Apply DVDD18 equal to 1.8V. Apply reference supply 2V (REFP-REFN), clock 2.5MHz. Set OSR=2048 and f_{MOD} = 78.125 KHz. Enable OLDD and OVDD. Select analog channel 0 and PGA equal to 1. Perform system offset calibration.

Full Scale Error before Calibration: Apply 2V at input. Read ADC data output and check for pass/fail limit.

Full Scale Error after self gain calibration: Perform self gain calibration. Apply 2V at input and read ADC output and checks the data for pass/fail limit.

Full Scale Error after system gain calibration: Apply 2V at input. Perform system gain calibration. Read ADC output and check for pass/fail limit.

Repeat for all PGA setting.

CMRR (Common Mode Rejection Ratio) Test: Apply AVDD, DVDDO and MVDD equal to 3.3V. Apply DVDD18 equal to 1.8V. Apply reference supply 2V (REFP-REFN), clock 2.5MHz. Set OSR=2048 and f_{MOD} = 78.125 KHz. Select analog channel 0 and PGA equal to 1. Perform system offset calibration. Short channel inputs INP and INN and apply input 0V to 3.3V (V_{CM}) in step of 0.3V with reference to AGND. Read ADC data output for 20 samples at each step and record average value. Calculate the CMRR as given below.

CMRR = -20 * (Log10 ((|ADCOUT₀ - ADCOUT_{VCM}|) / V_{CM}))) + (20 * (Log10 (PGA))

Where $ADCOUT_0$ is average value of ADC output at 0V input and $ADCOUT_{VCM}$ is average value of ADC output at desire common mode input voltage. Check the calculated CMRR value for pass/fail limit. Repeat the procedure for all PGA setting.

Effective Resolution Test: Apply AVDD, DVDDO and MVDD equal to 3.3V. Apply DVDD18 equal to 1.8V. Apply reference supply 2V (REFP-REFN), clock 2.5MHz. Set $f_{MOD} = f_{CLK}$ /32. Select analog channel 0 and PGA equal to 1. Perform system offset and system gain calibration. Short INP1 and INN1 and apply 1.65V w.r.t. AVSS and read ADC output for 100 samples at each PGA and OSR combinations. Calculate ENOB as given below.

$ENOB = 24 - Log_2 (ADCOUT_{MAX} - ADCOUT_{MIN}) + 2.7$

Where **ADCOUT**_{MAX} and **ADCOUT**_{MIN} are maximum and minimum ADC output sample value. Check the calculated ENOB for pass/fail limit.