16-BIT TRANSCEIVER 3-STATE OUTPUT

(COLD SPARING, HOT INSERTION

<u>& 5V TOLERANT INPUT)</u>

(SC1124-0)

(Radiation Tolerant)

DATA SHEET Version 1.1, Dec' 2020

Semi–Conductor Laboratory Government of India S.A.S. Nagar, Punjab-160071 www.scl.gov.in

PRODUCT DESCRIPTION:

SC1124-0 16-bit Transceiver is designed for low-voltage (V_{DD} =3.3V) operation, but with the capability to provide a TTL interface to a 5V system environment. These devices can be used as two 8-bit Transceivers or one 16-bit Transceiver. These devices provide true outputs and symmetrical active-low output-enable (\overline{OEB}) inputs.

The A port outputs includes equivalent 22 Ω series resistors to reduce overshoot and undershoot.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pull down resistors with the bus-hold circuitry is not recommended.

When V_{DD} is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down.

However, to ensure the high-impedance state above 1.5 V, (\overline{OEB}) should be tied to V_{DD} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

These devices are fully specified for hotinsertion applications using Ioff and power-up 3state. The I_{OFF} circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down.

The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

FEATURES:

- Operating Power Supply 3.3V ±0.3V
- Cold sparing feature at I/O
- A port outputs have equivalent 22 Ω series resistors, so no external resistors are required.
- 5V tolerant inputs for interfacing 5V logic with 3.3V V_{DD}
- I_{OFF} and power-up 3-state support hot Insertion
- Bus Hold on data inputs eliminates the need for external pull-up / pull-down resistors
- Distributed V_{DD} and GND pins minimize high-speed switching noise
- Flow-through architecture optimizes PCB layout
- 6.0 ns typical propagation delay
- Typical V_{OLP} (Output Ground Bounce) < 0.8 V at V_{DD} = 3.3 V, T_A = 25°C
- Low power dissipation (<1mW at 3.6V static)
- Operating Temperature: -55°C to 125°C.
- Radiation Tolerant up to 100 KRad
- SET/SEL immune up to 50 MeV.cm²/mg
- 48 Pin CDFP /Customized package /Die
- Pin compatible with LVTH162245.
- Package $\Theta_{JC} = 2.7^{\circ}C/Watt$
- ESD Sensitivity Level: HBM Class 1A (250V to 499V), passed up to 300V
- SCL's 180nm CMOS Technology

RT 16-BIT TRANSCEIVER 3-STATE OUTPUT (SC1124-0)

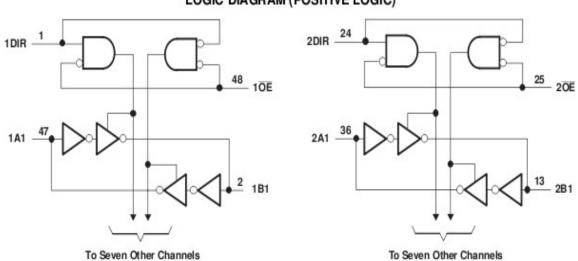
PIN CONFIGURATION:

Pin no.	Signal	Pin no.	Signal
1	1DIR	25	2 <i>0EB</i>
2	1B1	26	2A8
3	1B2	27	2A7
4	GND	28	GND
5	1B3	29	2A6
6	1B4	30	2A5
7	VDD	31	VDD
8	1B5	32	2A4
9	1B6	33	2A3
10	GND	34	GND
11	1B7	35	2A2
12	1B8	36	2A1
13	2B1	37	1A8
14	2B2	38	1A7
15	GND	39	GND
16	2B3	40	1A6
17	2B4	41	1A5
18	VDD	42	VDD
19	2B5	43	1A4
20	2B6	44	1A3
21	GND	45	GND
22	2B7	46	1A2
23	2B8	47	1A1
24	2DIR	48	1 <i>0EB</i>

1DIR	1	48	028
181	2	47	1A1
1B2	3		1A2
GND		46	GND
183	4	45	1A3
184	5	44	1A4
VDD	6	43	VDD
185	7	42	1A5
186	8	41	1A6
	9	40	
GND	10	39	GND
187	11	38	1A7
188	12	37	1A8
2B1	13	36	2A1
2B2	14	35	2A2
GND	15	34	GND
2B3			2A3
2B4	16	33	2A4
VDD	17	32	VDD
2B5	18	31	2A5
2B6	19	30	2A6
GND	20	29	GND
287	21	28	2A7
288	22	27	2A8
	23	26	2028
2DIR	24	25	202.8

Package Pin Details

Device Package View



FUNCTIONAL TABLE:

CONT	ROL INPUTS	OUTPUT	CIRCUITS	ODEDATION
OEB	DIR	A PORT	B PORT	OPERATION
L	L	Enabled	Hi-Z	B data to A bus
L	н	Hi-z	Enabled	A data to B bus
н	х	Hi-z	Hi-Z	Isolation

Truth table

LOGIC DIAGRAM (POSITIVE LOGIC):

LOGIC DIAGRAM (POSITIVE LOGIC)

Device Logic Diagram

ABSOLUTE MAXIMUM RATINGS (1):

Over operating free-air temperature range (unless otherwise noted),

PARAMETER	UNIT
Supply Voltage Range (V _{DD})	-0.5 V to 4.3V
Input Voltage Range (V _{IN})	–0.5 V to 6.5V
Output Voltage Range In High Impedance or Power Off (V_{OUT})	-0.5 V to 4.3V
Output Voltage Range Applied In High State (V _{OUT})	$-0.5~\mathrm{V}$ to V_{DD} + 0.5 V
Max. Junction Temperature (T _J)	150°C
Storage Temperature Range (T _{STG})	-65°C to 150°C

(1) Stresses beyond those listed under *absolute maximum ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *recommended operating conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS:

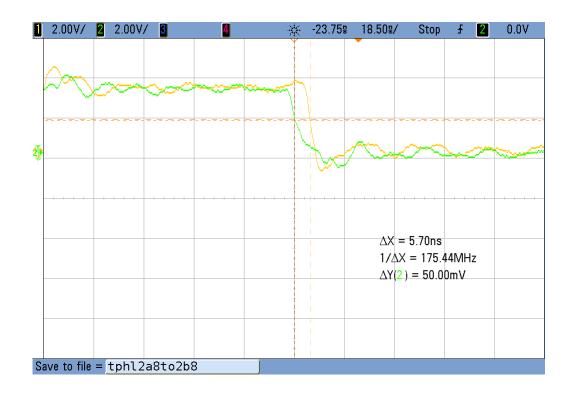
Symbol	Parai	neter	Min.	Тур.	Max.	Unit
V _{DD}	Supply	voltage	3.0	3.3	3.6	V
V _{IH}	High level input voltage		2.0	-	5.5	V
V _{IL}	Low level input voltage		0	-	0.8	V
T	High-level	PORT A	-	-	-12	mA
I _{он}	output current	PORT B	-	-	-24	mA
T	Low-level	PORT A	-	-	12	mA
I _{OL}	output current	PORT B	-	-	24	mA
$\Delta t / \Delta V_{DD}$	Power up ramp rate		200	-	-	usec/V
T _A	Ambient Temperature range		-55	-	125	°C

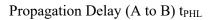
DC ELECTRICAL SPECIFICATIONS:

Table below shows eelectrical test conditions, test limits and typical measured values.

Symbol	Paramete	r	Test Conditions		Test Conditions		Test Conditions		V _{DD}	Т	est Limi	ts	Units
Symbol	1 ai amete		103	• 00	MIN.	ТҮР.	MAX.	Onits					
			$V_{IN} = V_{SS} \text{ or } V_{DD}$		3.6V	-	-	±1	μA				
-		Control Pins		$V_{IN} = 5.5V$		-	-	±10	pri i				
I _{IN}	Input Current			= 0V or 5.5V	0V		-	±10					
		A or B Ports		$= V_{SS} \text{ or } V_{DD}$	3.6V	-	-	± 5 ± 10	μA				
I _{IN}	Input Bus Hold			$V_{\rm IN} = 5.5 V$ = $V_{\rm IL} = 0.8 V$		-	- 120	± 10 ± 200	μΑ				
(hold)	Current	A or B Ports		$V_{\rm IL} = 0.8V$ = $V_{\rm IH} = 2.0V$	3.0V	-	-147	± 200	μA μA				
		A Port	$V_{IH} = 2V$	$I_{OH} = -100 uA$	3.0V	2.8	2.99	-					
V	High Level output			$I_{OH} = -12mA$		2.0	2.43	-	17				
V _{OH}	Voltage	D Dout	$\mathbf{V} = 2\mathbf{V}$	$I_{OH} = -100uA$	2 01/	2.8	2.97	-	V				
		B Port	$V_{IH} = 2V$	$I_{OH} = -8mA$	3.0V	2.4	2.74	-					
				$I_{OH} = -24mA$ $I_{OL} = 100uA$		2.0	2.38 0.003	- 0.2					
		A Port	$V_{IL} = 0.8V$	$I_{OL} = 100 \text{uA}$ $I_{OL} = 12 \text{mA}$	3.0V	-	0.003	0.2					
V _{OL}	Low Level output			$I_{OL} = 100 \text{uA}$		_	0.005	0.8	V				
▼ OL	Voltage	B Port	$V_{IL} = 0.8V$	$I_{OL} = 12mA$	3.0V	_	0.005	0.2	v				
		DIOR	VIL 0.0V	$I_{OL} = 24 \text{mA}$	5.0 V	_	0.641	0.8					
T	Three-State Output	A Port	$\overline{OEB} = \text{Disabled}$ $V_{O} = 3V$		3.6V	-	-	±5	A				
I _{OZH}	Leakage Current High	B Port			3.0 V	-	-	±3	μA				
T	Three-State Output	A Port	$\overline{OEB} = \text{Disabled}$			-	-						
I _{OZL}	Leakage Current Low	B Port	$V_0 = 0.5V$		3.6V	-	-	± 5	μA				
I _{OFF}	Power Off Input Leakage Current	A or B Ports	$V_I = 0V \text{ or } 4.5V$		0V	-	-	±50	μΑ				
IOFF	Power Off Output Leakage Current	A or B Ports	V _o =	= 0V or 4.5V	0V	-	-	±50	μΑ				
			$V_{IN} = V_{DD}$	Outputs High		-	0.140						
		A Port I/P		Outputs Low		-	0.139						
	Static Supply Current		or V _{SS}	Outputs Disabled	3.3±	-	0.139	0.25	mΛ				
I _{DD}	(No Load, Iout =0A)		$V_{IN} = V_{DD}$	Outputs High	0.3V	-	0.140	0.23	mA				
		B Port I/P		Outputs Low		-	0.136						
			or V _{SS} Outputs Disa			-	0.139						
ΔI_{DD}	Static Supply Current	A Port	One input at $V_{DD} - 0.6V$		3.0 V and	-	24.9	100	uA				
	delta	B Port	Other input at V_{DD} or V_{SS}		3.6 V	-	24.3	100]				
Ras	ic Functional Test	A Port	$\label{eq:VIL} \begin{array}{c} V_{IL}{=}0.8V, V_{IH}{=}2.0V \\ V_{OL}{\leq}0.4V, V_{OH}{\geq}2.4V \end{array}$		$3.3 \pm$	_	_	1	Mhz				
		B Port			0.3V		_	1	IVIIIZ				
Functio	onal Test 5V Tolerant	A Port	$V_{IL}=0V, V_{IH}=5.5V$		3.0V	_	-	1	Mhz				
		B Port	$V_{OL} \leq 0.4 V, V_{OH} \geq 2.4 V$										

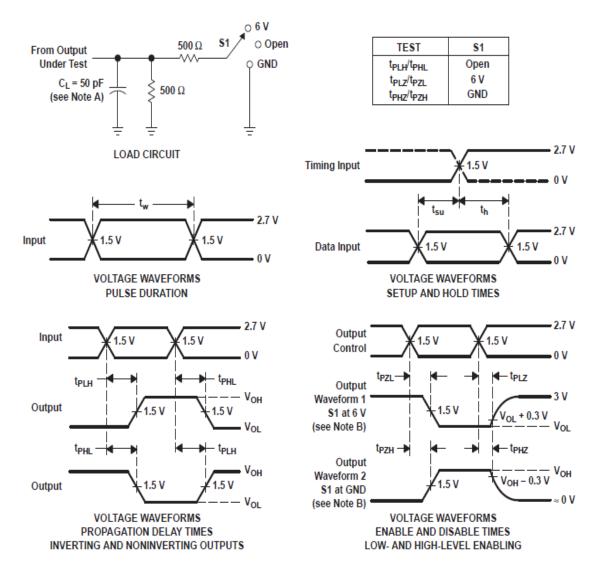
DC Electrical Specification




AC ELECTRICAL SPECIFICATIONS:

Test condition:

 $V_{DD}{=}3.3V,\,V_{IN}{=}\,0V$ or 3.3V @1 MHz, $R_L{=}500\Omega$, $C_L{=}50pF,\,T_A{=}22\pm3^\circ C$


Danamatan	Enom	Та	$V_{DD} = 3.3 V$			I.I.a.:4a	
Parameter	From	То	Min.	Тур.	Max.	Units	
t _{PLH}	A	В	-	5.23	10	ns	
t _{PHL}	A	Б	-	5.30	10	ns	
t _{PLH}	В		-	6.24	10	ns	
t _{PHL}	D	А	-	6.31	10	ns	
t _{PZH}			-	5.22	-	ns	
t _{PZL}	<u> </u>	В	-	4.86	-	ns	
t _{PHZ}		D	-	4.16	-	ns	
t _{PLZ}]		-	4.68	-	ns	
t _{PZH}			-	5.74	-	ns	
t _{PZL}	<u>OEB</u>		А	-	5.20	-	ns
t _{PHZ}		A	-	5.02	-	ns	
t _{PLZ}]		-	5.51	-	ns	

TEST CIRCUIT AND SWITCHING WAVEFORM:

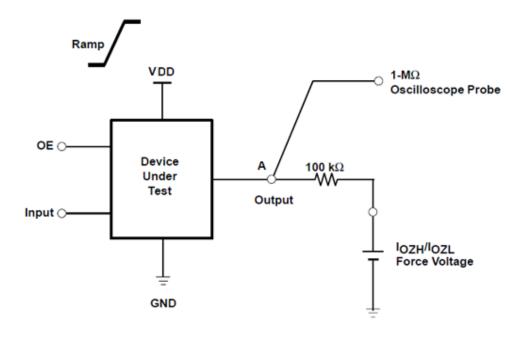
AC parameter measurement information

NOTES:

A: CL includes probe and jig capacitance

B: Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.

COLD SPARING (IOFF) TEST:

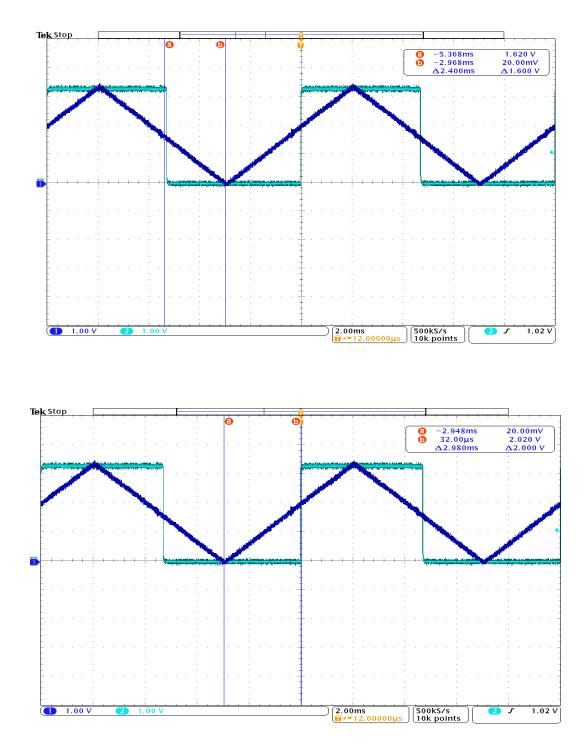

In cold sparing I/O when V_{DD} is down to zero volt, I/Os will go in the high-impedance state so that damage to the device does not occur.

Ioff protection circuitry ensures that no excessive current is drawn from or to an input, output, or combined I/O that is biased to a specified voltage while the device is powered down. This condition can occur when subsections of a system are powered down (partial power down) to reduce energy consumption. All standard logic devices with the I_{OFF} specification allow only 100 uA of maximum current. Any current in excess of this amount (for example, a forward-biased p-n junction) is not considered normal leakage current.

PU3S (Power Up Tri State) HOT INSERTION TEST:

Testing of power-up three-state (PU3S) circuits was done at nominal temperature and voltage. All devices tested have a nominal V_{DD} of 3.3 V.

The test setup is shown below. The V_{DD} was ramped at ramp rate (> 200usec / V) to determine the effect of the V_{DD} ramp rate on the device output or I/O structure. I_O was not measured directly; instead the voltage was measured at the output or I/O terminal (terminal A in Figure 1) with a 1-M Ω oscilloscope probe.

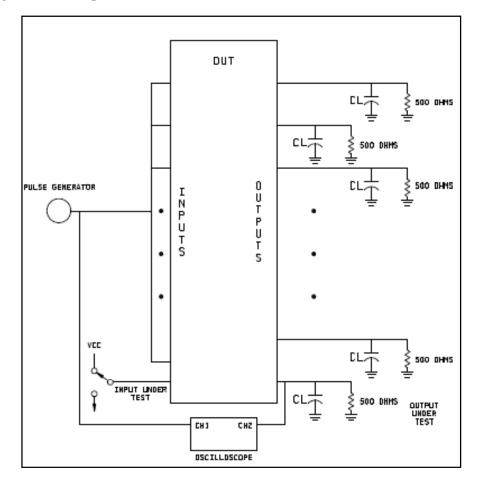


Test circuit (PU3S)

HOT INSERTION TEST

Conditions: \overline{OEB} = LOW (Enable), I/P = Low (0V), O/P = 3.3V through 1K Ω resistor

 V_{OZH} at supply V_{DD} (ramp rate: 1msec/V), O/P is in HighZ with V_{DD} <1.5V

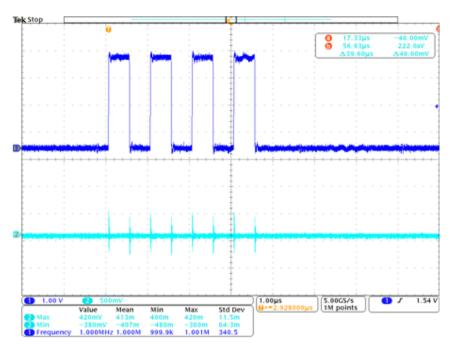


<u>GROUND BOUNCE AND VDD</u> BOUNCE: (MIL-STD-883E METHOD 3024)

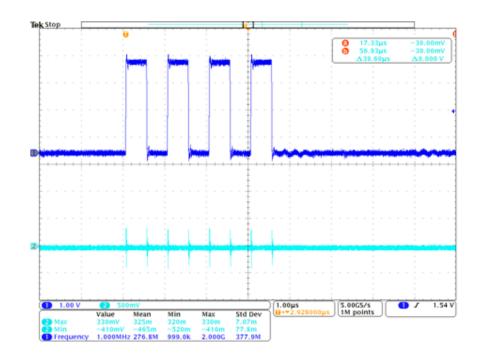
- A. **Ground bounces noise:** The voltage amplitude (peak) of extraneous signals present on a low-level non-switching output with a specified number of other outputs switching. Ground bounce noise on a logic low output can be of sufficient amplitude to exceed the high level threshold of a receiver, or cause latch-up on unprotected CMOS inputs.
- B. V_{DD} bounce noise: The voltage amplitude (peak) of extraneous signals present on a highlevel non-switching output with a specified number of other outputs switching. VCC bounce on a logic high output can be of sufficient amplitude to exceed the low level threshold of a receiver, or cause latch-up on unprotected CMOS inputs.

Ground bounce and V_{DD} bounce tests were done at nominal temperature and voltage.

All devices tested have a nominal V_{DD} of 3.3 V. The output condition for pin under test is to a low level for Ground bounce and to a high level for V_{DD} bounce test and the other outputs were switching. The test setup is shown below;

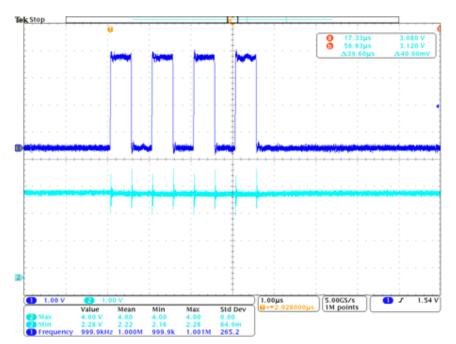


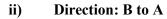
Test Circuit (Ground /VDD Bounce)

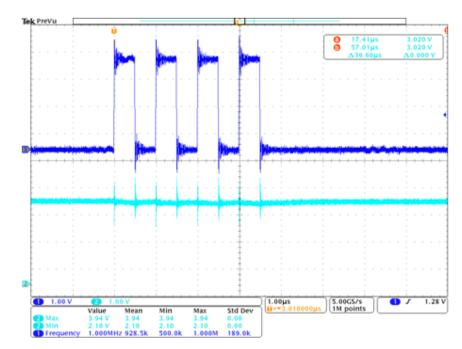

GROUND BOUNCE TEST:

Conditions: \overline{OEB} = LOW (Enable), I/P corresponding to output under test = Low (0V), other inputs = Switching, O/P under test = through 500 Ω resistor

i) Direction: A to B

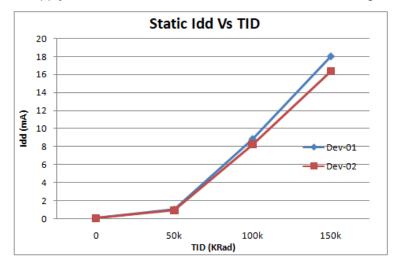

ii) Direction: B to A




V_{DD} BOUNCE TEST:

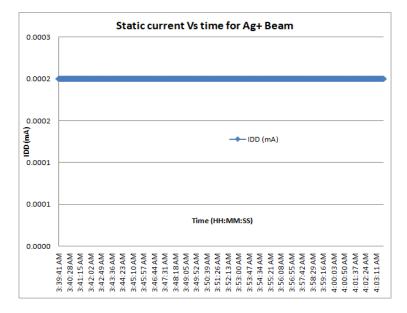
Conditions: \overline{OEB} = LOW (Enable), I/P corresponding to output under test = High (3.3V), other inputs = Switching, O/P under test = through 500 Ω resistor

i) Direction: A to B



RADIATION CHARACTERISTICS:

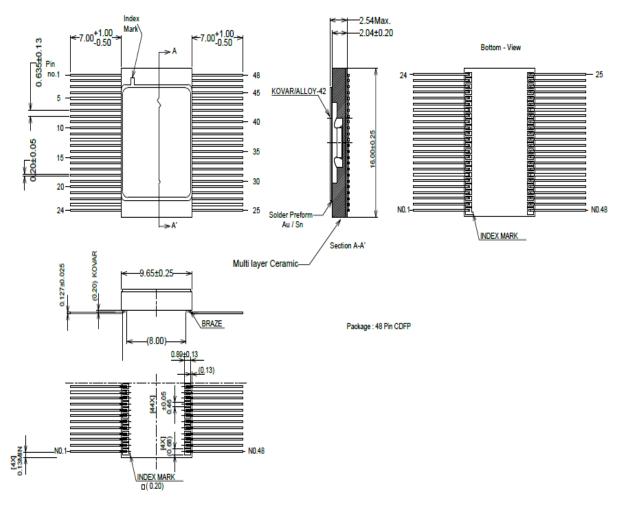
***** Total Ionization Dose (TID) Testing


- TID testing of 16 Bit Transceiver (SC1124-0) is performed for radiation level up to 150 KRad.
- No functional degradation and no significant change in device parameters such as IIL, IIH, VOL & VOH was observed up to 100KRad.
- > Static supply current increases with radiation dose, shown in figure below.

✤ Single Event Effect (SEE) Testing

SEE testing of 16 Bit Transceiver (SC1124-0) is performed at two different LET energy ion beams Ti+ (20 MeV-cm2/mg) and Ag+ (50 MeV-cm2/mg) for a Fluence of 10⁶ ions/cm².

- No Single Event latch-up (SEL) was observed up to LET of 50 MeV-cm2/mg. Supply current (I_{DD}) remains within specification throughout testing.
- > No Single Event transient (SET) was observed up to LET of 50 MeV-cm2/mg.



REVISION HISTORY

S. No.	Version	Date of release	Description
1	1.0	26 th March 2019	New
2	1.1	December 2020	Revised

PACKAGE DRAWING (48 Pin Ceramic Dual Flat Pack):

NOTE: All linear dimensions are in inches (mm.)

DISCLAIMER

Semi Conductor Laboratory (SCL) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and specifications, and to discontinue any product. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. Reproduction of significant portions of SCL information in SCL data sheets is permissible only if reproduction is without alteration and is accompanied by all associated conditions, limitations, and notices. SCL is not responsible or liable for such altered documentation.