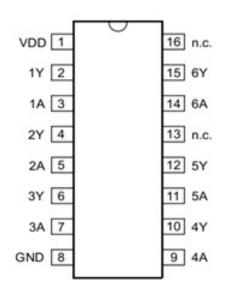
HIGH SPEED NON-INVERTING HEX BUFFER (5V) (SC1013-0) (Radiation Hardened) **DATA SHEET** Version 2.2, October 2021

Semi–Conductor Laboratory Government of India S.A.S. Nagar, Punjab-160071 www.scl.gov.in

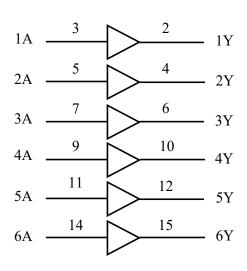
PRODUCT DESCRIPTION:

SC1013-0 is Radiation Hardened, High Speed Non-Inverting Hex Buffer. It consists of 6 buffer stages, providing high noise immunity and a stable output.

Devices have a modified input protection structure that enables these parts to be used as logic level translators which convert highlevel logic to a low level logic while operating off the low-level logic supply. For example, 5V input pulse levels can be down-converted to 0V to 3V logic levels.


APPLICATIONS:

- Wave and pulse shapers
- High-noise-environment systems
- Monostable multivibrators
- Astable multivibrators
- NAND logic


FEATURES:

- Operating Supply Voltage 2.5V to 5.5V
- Cold Sparing feature at inputs
- High-to-Low Voltage Level Converter up to V_{IN}=5.5V
- Typical Propagation Delay : 5.5 ns at V_{DD} =5.0V, C_L=30pF, T_A=25°C
- Low Power Dissipation, I_{DD} (typ.) < 1µA
- Balanced Propagation Delays and transition times
- Symmetrical Output loading $I_{OH} = I_{OL} = 8 \text{mA}$
- Radiation Hardened up to 100 KRad TID
- SET/SEL immune up to LET 50 MeVcm2/mg.
- Operating Temperature: -55°C to 125°C.
- Pin compatible with HC4050
- Package $\Theta_{JC} = 3.1^{\circ}C/Watt$
- Ceramic Flat package (FP-16), DIP-16
- ESD Sensitivity Level: HBM Class 1B (500V to 999V), passed up to 500V
- SCL's 180nm CMOS Technology

PIN CONFIGURATION:

Device Pin diagram

Device Logic Diagram

PIN DESCRIPTION:

Symbol	Pin No.	Description
1A to 6A	3, 5, 7, 9, 11, 14	Input
1Y to 6Y	2, 4, 6, 10, 12, 15	Output
V _{DD}	1	Supply Voltage
V _{SS}	8	Ground (0V)
NC	13,16	Not Connected

FUNCTIONAL TABLE:

Input	Output
nA	nY
L	L
Н	Н

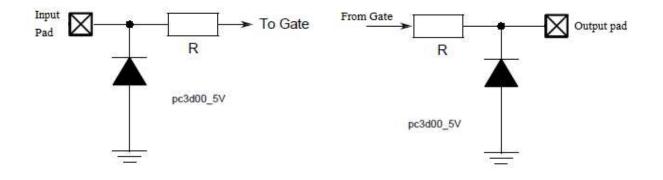
ABSOLUTE MAXIMUM RATINGS (1):

Over operating free-air temperature range (unless otherwise noted),

Parameter	Symbol	Ratings	Remarks
Supply Voltage Range	V _{DD}	-0.5V to 6.5V	
Input/ Output Voltage Range V _{IO}		-0.5V to 6.5V	
Supply Current ⁽²⁾	I _{DD}	84 mA	
Power Dissipation	P _D	462 mW	84mA*5.5V
Max. Junction Temperature	T _J	150°C	
Storage Temperature Range	T _{STG}	–65°C to 150°C	

⁽¹⁾ Stresses beyond those listed under *absolute maximum ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *recommended operating conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Maximum supply current that can be drawn from V_{DD} pin for output loading requirement.


RECOMMENDED OPERATING CONDITIONS:

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{DD}	Supply Voltage	2.5	3.3	5.5	V
VI	Input Voltage	0	-	5.5	V
Vo	Output Voltage	0	-	V _{DD}	V
Io	Output Source/Sink	-	-	8	mA
t _{rise} / t _{fall}	Input rise and fall time $(V_{DD} = 5.5V)$	-	-	50	nsec
T _A	Operating Free Air Temperature	-55	25	+125	°C

PROTECTION NETWORKS

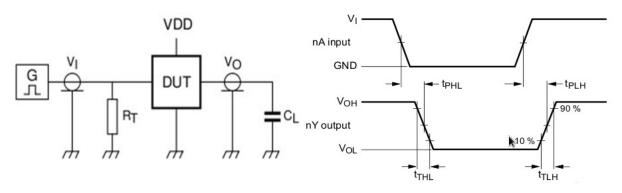
INPUT PROTECTION

OUTPUT PROTECTION

Device I/O pads ESD Diagram

DC ELECTRICAL SPECIFICATIONS:

Symbol	Parameter	Test Conditions	Test Results			Units
Symbol	rarameter	Test Conditions	Min	Typ.	Max	Units
I _{DD}	Static Supply Current	$V_{IL} = 0V, V_{IH} = 5.5V$ $V_{DD} = 5.5V$ (All Outputs Open)		-	2	uA
I _{IL}	Low Level Input Leakage Current	$V_{DD}=5.5V$ $V_{IN}=0V$	-	-	-1	uA
I _{IH}	High Level Input Leakage Current	$V_{DD}=5.5V$ $V_{IN}=5.5V$	-	-	1	uA
V _{OL1}	Low Level Output Voltage 1	V _{IL} =0.5V, I _{OL} =20uA V _{DD} =2.5V, V _{SS} =0V	-	-	100	mV
V _{OL2}	Low Level Output Voltage 2	V _{IL} =0.9V, I _{OL} =20uA V _{DD} =4.5V, V _{SS} =0V	-	-	100	mV
V _{OL3}	Low Level Output Voltage 3	V _{IL} =1.1V, I _{OL} =20uA V _{DD} =5.5V, V _{SS} =0V	-	-	100	mV
V _{OL4}	Low Level Output Voltage 4	V _{IL} =0.5V, I _{OL} =8mA V _{DD} =2.5V, V _{SS} =0V	-	190	400	mV
V _{OL5}	Low Level Output Voltage 5	V _{II} =0.9V, I _{OL} =8mA V _{DD} =4.5V, V _{SS} =0V	-	180	400	mV
V _{OL6}	Low Level Output Voltage 6	V _{IL} =1.1V, I _{OL} =8mA V _{DD} =5.5V, V _{SS} =0V	-	170	400	mV
V _{OH1}	High Level Output Voltage 1	V _{IH} =1.75V, I _{OL} =20uA V _{DD} =2.5V, V _{SS} =0V	2.4	2.48	-	V
V _{OH2}	High Level Output Voltage 2	V _{IH} =3.15V, I _{OL} =20uA V _{DD} =4.5V, V _{SS} =0V	4.4	4.48	-	V
V _{OH3}	High Level Output Voltage 3	V_{IH} =3.85V, I_{OL} =20uA V_{DD} =5.5V, V_{SS} =0V	5.4	5.48	-	V
V _{OH4}	High Level Output Voltage 4	V _{IH} =1.75V, I _{OL} =8mA V _{DD} =2.5V, V _{SS} =0V	1.7	2.3	-	V
V _{OH5}	High Level Output Voltage 5	V _{IH} =3.15V, I _{OL} =8mA V _{DD} =4.5V, V _{SS} =0V	3.7	4.3	-	V
V _{OH6}	High Level Output Voltage 6	V_{IH} =3.85V, I_{OL} =8mA V_{DD} =5.5V, V_{SS} =0V	4.7	5.3	-	V

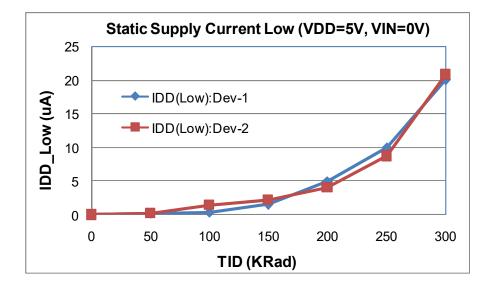

 V_{DD} =2.5V to 5.5V, V_{SS} =0V, T_{AMB} = -55°C to +125°C (unless otherwise noted)

DC ELECTRICAL SPECIFICATIONS (Continued..)

	_	Test Conditions		Т	est Results		
Symbol	Parameter			Min	Typ.	Max	Units
	Power Off Input Leakage Current	$V_{DD} = 0V$	$V_{IN} = 2.5V$	-5	0.5	5	uA
I _{OFF}			$V_{IN} = 0V$	-5	0.1	5	uA
	(Cold Spare)		$V_{IN} = 5.5V$	-	100	150	uA
	Functional Test 1	12 ,	V _{IH} =1.75V , (No Load)	-	-	-	-
Functional (Truth Table	Functional Test 2	V _{IL} =0.9V,V _{IH} =3.15V V _{DD} =4.5V, (No Load)		-	-	-	-
Verification)	Functional Test 3	$V_{IL}=1.1V, V_{IH}=3.85V$ $V_{DD}=5.5V, (No Load)$		-	-	-	-
	Functional Test 4	$V_{IL}=0.5V, V_{IH}=5.5V$ $V_{DD}=2.5V, (No Load)$		-	-	-	-
t _{PHL}	Propagation Delay High to Low (50% to 50%)	V_{DD} =5.0V, 1MHz, C _L =30pF V_{IL} =0V, V_{IH} = 5.0V		-	5.5	17	ns
t _{PLH}	Propagation Delay Low to High (50% to 50%)	V_{DD} =5.0V, 1MHz, C _L =30pF V_{IL} =0V, V_{IH} = 5.0V		-	5.5	17	ns
t _r	V _{OUT} rise time (10% to 90%)	V_{DD} =5.0V, 1MHz, T_{A} =25°C, C _L =30pF V_{IL} =0V, V _{IH} = 5.0V		-	8.6	-	ns
t _f	V _{OUT} fall time (90% to 10%)	$V_{DD}=5.0V, 1MHz, T_{A}=25^{\circ}C, C_{L}=30pF V_{IL}=0V, V_{IH}=5.0V$		-	8.5	-	ns

TEST CIRCUIT AND SWITCHING WAVEFORM:

Page 6 of 9



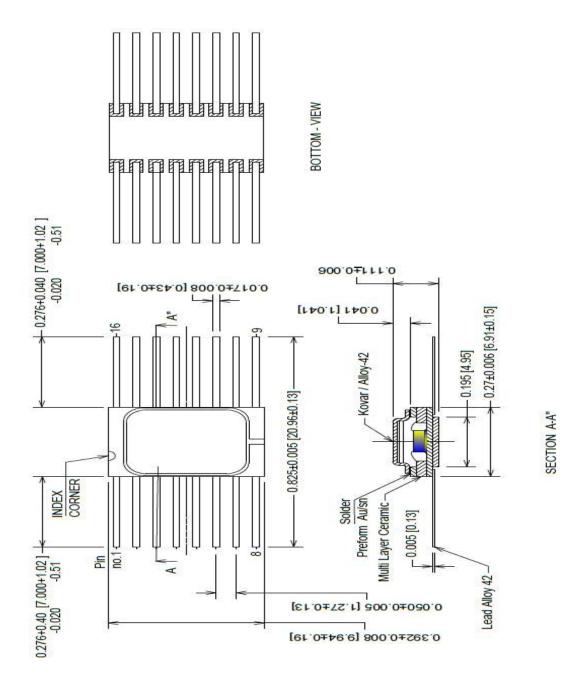
RADIATION CHARACTERISTICS:

***** Total Ionization Dose (TID) Testing

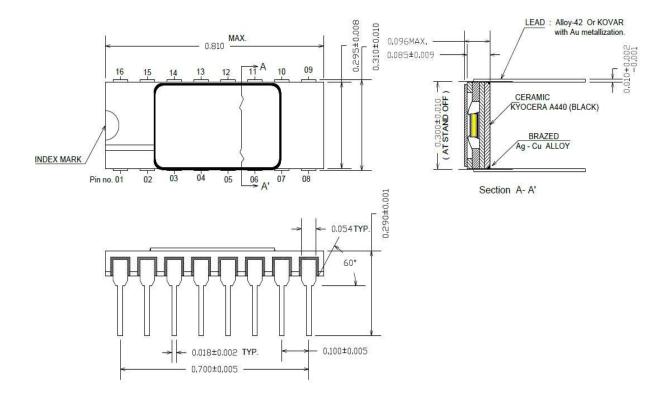
TID testing of Hex Buffer (SC1013-0) is performed for radiation level upto 300KRad.

- > No functional degradation was observed upto 300 Krad.
- No significant change in device parameters such as IIL, IIH, VOL & VOH was observed upto 300KRad.
- > Typical static supply current remains around 2 uA upto 150 krad.

✤ Single Event Effect (SEE) Testing


SEE testing of Hex Buffer (SC1013-0) is performed at three different LET energy ion beams Ti+ (21 MeV-cm2/mg), Ni+ (30 MeV-cm2/mg) and Ag+ (50 MeV-cm2/mg) for a Fluence of 10^6 ions/cm².

- No Single Event latch-up (SEL) was observed upto LET of 50 MeV-cm2/mg. Supply current (IDD) remains within specification throughout testing.
- > No Single Event transient (SET) was observed upto LET of 50 MeV-cm2/mg.



PACKAGE DRAWING (16-Pin Ceramic-Dual-Flat pack)

NOTE: All linear dimensions are in inches (mm.)

PACKAGE DRAWING (Ceramic DIP-16)

Revision History						
S. No.	Version	Date of release	Description			
1	1.0	15 March 2019	First Release (V _{DD} =4.5V to 5.5V)			
2	2.0	30 Nov. 2019	Extended V _{DD} from 2.5V to 5.5V, Added Radiation test results			
3	2.1	March 2021	Title name Changed Added DIP-16 Package Information			
4	2.2	21 October 2021	Added ESD Levels & SEE results. Modified TID level			

IMPORTANT NOTICE

Semi Conductor Laboratory (SCL) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and specifications, and to discontinue any product. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. Reproduction of significant portions of SCL information in SCL data sheets is permissible only if reproduction is without alteration and is accompanied by all associated conditions, limitations, and notices. SCL is not responsible or liable for such altered documentation.