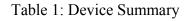


Feb 2022

Semi-Conductor Laboratory

Government of India

PRODUCT DESCRIPTION:


Quad RS-422 (SC1011-0) is a differential line driver. The enable function is common to all four drivers and offers a choice of active-high or active-low inputs. Each driver has a separate input and output pins for full-duplex bus communication designs. The device is designed for balanced bus transmission at switching rates up to 5 MHz

FEATURES:

- Operates From Single 3.3V V_{CC}
- Switching Rates up to 5 MHz
- Transmission Rate to 10 Mbps
- Differential-State Outputs
- Designed for Multipoint Bus Transmission
- Common Mode Output Voltage Range: 0V to 3V

DEVICE SUMMARY:

Reference	Package	Pins	Lead Finish
SC1011-0	DIP	16	Gold

PIN CONFIGURATION:

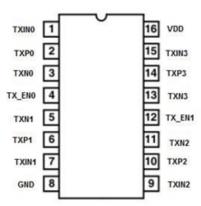


Figure-1: Device Pin Diagram

LOGIC DIAGRAM:

Figure-2: Device Logic Diagram

PIN DESCRIPTION:

SYMBOL	PIN	PIN DESCRIPTION
VDD	16	Supply Voltage (3.3V)
TXIN0, TXIN1, TXIN2, TXIN3	1,7,9,15	Inputs
TXP0, TXP1, TXP2, TXP3	2,6,10,14	Positive Outputs
TXN0, TXN1, TXN2, TXN3	3,5,11,13	Complementary Outputs
TX_EN0, TX_EN1	4,12	Enable Pins
GND	8	Ground (0V)

Table-2: Device Pin Description

FUNCTIONAL TABLE:

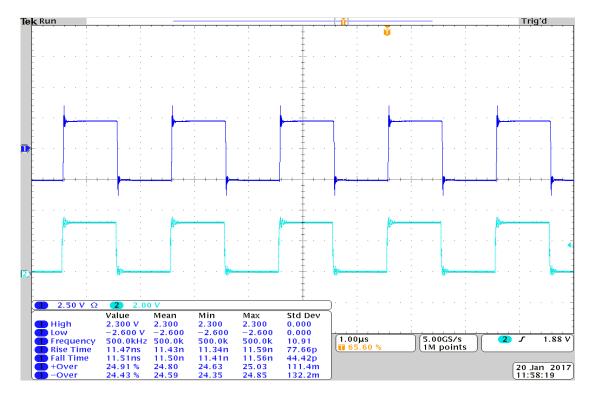
Device Power	INPUTS			OUTPUTS		
ON/OFF	Enable	Enable	IN	OUT	OUT	
ON	L	н	Х	HI-Z	HI-Z	
ON	Н	х	L	L	Н	
ON	Х	L	L	L	Н	
ON	Н	х	Н	Н	L	
ON	х	L	Н	Н	L	
OFF (0V)	х	Х	х	HI-Z	HI-Z	

Table 3: Truth Table

BASIC DC-PARAMETER TESTING & TEST CONDITIONS:

Test name	Test Parameter	Pins Tested	Force	Min	Тур.	Max	Unit	
ESD Diode	Positive Diode	All Input /	100uA	413.728		465.736	mV	
Test	Negative Diode	Output Pins	-100uA	-521.587		-473.758		
Input Gate Leakage Test (VDD = 3.3V)	IIL		VIN = 0V	-56.2		52.2		
	IIH	All Inputs	VIN = 3.3V	-9.4		1.1	nA	
Supply current	I _{DD}	All inputs Low	VDD = 3.3V VIL=0V	-	4.5	5.0	mA	
		All Inputs High	VDD = 3.3V VIH=3.3V	-	4.0	5.0	mA	

DRIVER ELECTRICAL CHARACTERISTICS


Symbol	Parameter	Test Condition		Min	Typical	Max	Unit
		$R_L = 100 \Omega$	Driver Input = 0V		-2.2449		
VOD (SS)	Steady-State differential	Refer Figure10	Driver Input = 3.3V		2.4419		
• 00 (88)	output voltage	$V_{CM} = 0V$ to $3V$	Driver Input = 0V		-2.4505		
		Refer Figure11	Driver Input = 3V		2.4460		V
$\Delta V_{OD}(ss) $	Change in magnitude of Steady-State differential	$R_L = 100 \Omega$	Driver Input = 0V		0.01679		
	output voltage between states	Refer Figure10	Driver Input = 3.3V		0.01374		
N7	Differential output voltage	$\begin{aligned} R_{\rm L} &= 100 \ \Omega \\ C_{\rm L} &= 50 \ \mathrm{pF} \end{aligned}$	Positive Overshoot		24.91		%
VOD (RING)	overshoot and undershoot	Input PRR=500KHz, 50% Duty Cycle Refer Figure 13	Negative Overshoot		24.43		% 0
V _{OC (PP)}	Peak-to-peak common-mode output voltage	Refer Figure 13			0.3		
Voc (ss)	Steady-state common-mode output voltage	Refer Figure 13		1.5		1.8	V
ΔVoc (ss)	Change in Steady-state common-mode output voltage	Refer Figure 13			-		
Vон	Output Voltage High	$R_L = 100 \Omega$	Driver Input = 0V		0.6984		
• ОН	Output Voltage High	$K_{L} = 100.52$	Driver Input = 3.3V		3.14057		V
Vol	Output Voltage Low	$R_L = 100 \Omega$	Driver Input = 0V		3.12683		v
V OL	Output Voltage Low	$R_L = 100.22$ Driver Input = 3.3V			0.681609		
Idd (D)	Dynamic Current Supply Test	$V_{DD} = 3.3 V$ Input Pulse Rate = 5 MHz			4		mA
$I_{Z(Z)} \text{ or } \\ I_{Y(Z)}$	High-impedance state output current	TX_EN0 = 0, TX_EN1 = 1 Driver Input = 0/1			650	750	μΑ
		Driver Input = 0 TXP			-172		
I _{Z(S)} or	Short-circuit output current		1 X N		155		mA
I _{Y(S)}		Driver Input =	1 TXP TXN	3.18			-

DRIVER SWITCHING CHARACTERISTICS

Symbol	Parameter	Test Condition	Min	Typical	Max	Unit
t plh	Propagation delay time, low-to- high-level output			24		
t PHL	Propagation delay time, high- to-low-level output	$R_{\rm L} = 100 \ \Omega$		22		
tr	Differential output signal rise time	$C_L = 50 \text{ pF}$		9		ns
t _f	Differential output signal fall time			10		
Tsk(p)	Pulse skew (t _{PHL} -t _{PLH})			2		

TYPICAL CHARACTERISTICS:

Figure3: The Driver Output Overshoots

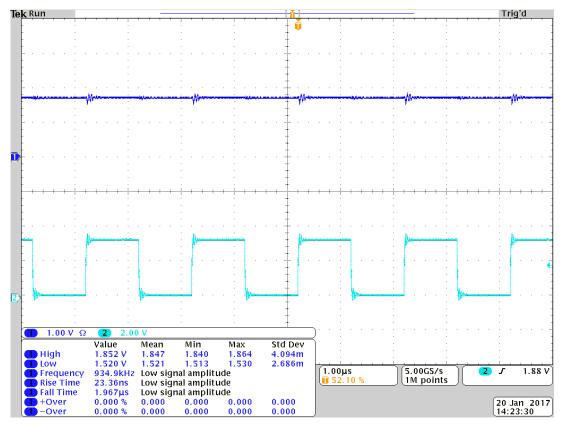


Figure4: The Driver Common-Mode Output Voltage

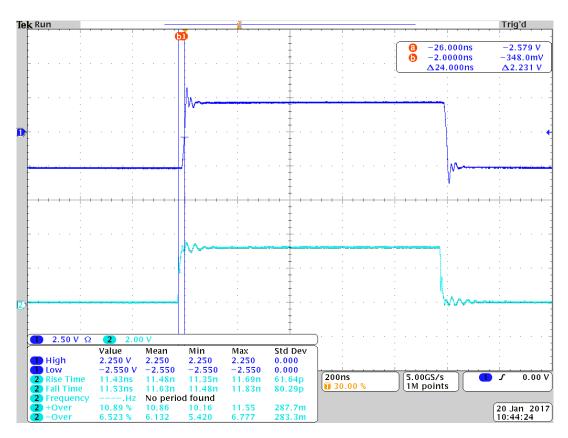


Figure5: Propagation Delay Time, Low-to-High-Level Output

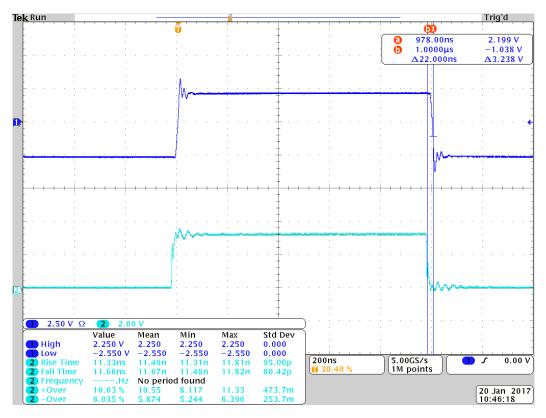


Figure6: Propagation delay time, high-to-low-level output

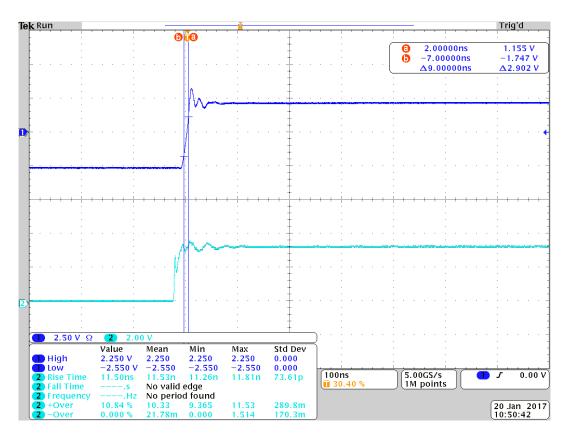


Figure7: Differential output signal rise time

Figure8: Differential output signal fall time

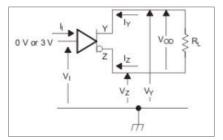



Figure9: Pulse Skew (|tphl-tplh|)

TEST CIRCUIT AND SWITCHING WAVEFORMS:

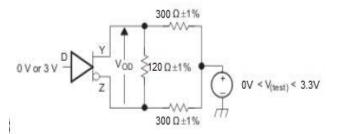


Figure10: Driver Vod, Voltage, Current

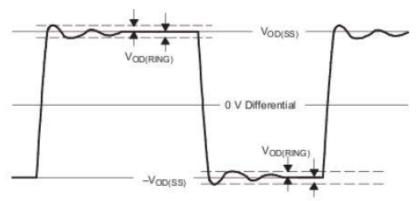
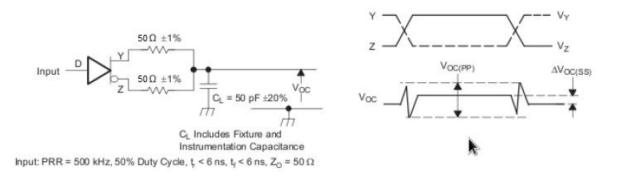
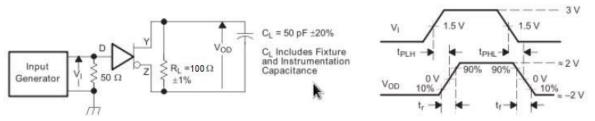




Figure12: Driver VOD (RING) Waveform and Definitions

Figure13: Driver Common-Mode Output Voltage

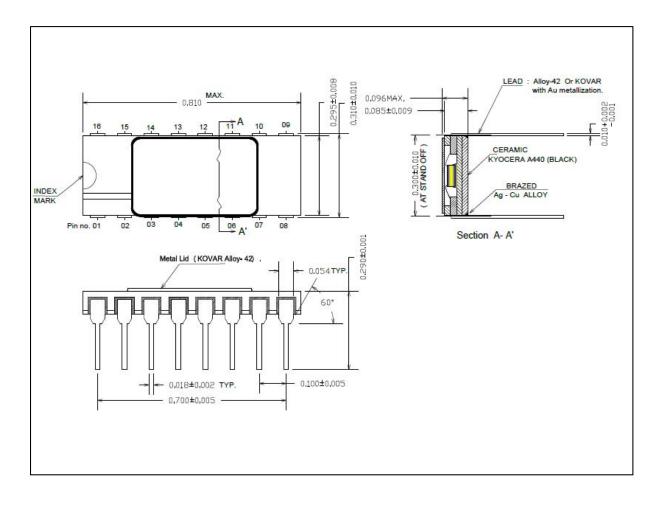

Generator: PRR = 500 kHz, 50% Duty Cycle, $t_{\rm f}$ < 6 ns, $t_{\rm f}$ < 6 ns, $Z_{\rm O}$ = 50 Ω

Figure14: Driver Switching and Voltage Waveforms

PACKAGE INFORMATION:

16 PIN CDIP

IMPORTANT NOTICE

Semi-Conductor Laboratory (SCL) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and specifications, and to discontinue any product. Buyers should obtain the latest relevant information before placing orders and should verify that such information is correct and complete. Reproduction of significant portions of SCL information in SCL data sheets is permissible only if reproduction is without alteration and is accompanied by all associated conditions, limitations, and notices. SCL is not responsible or liable for such altered documentation.